Abstract
Let {Wk(x)}k=0â be either unbounded or bounded Vilenkin system. Then, for each 0<Δ<1, there exist a measurable set Eâ[0,1)2 of measure |E|>1âΔ, and a subset of natural numbers Î of density 1 such that for any function f(x,y)âL1(E) there exists a function g(x,y)âL1[0,1)2, satisfying the following conditions: g(x,y)=f(x,y) on E ; the nonzero members of the sequence {|ck,s(g)|} are monotonically decreasing in all rays, where ck,s(g)=â«01â«01g(x,y)Wkâ(x)Wsâ(y)dxdy ; limRâÎ, RââSR((x,y),g)=g(x,y) almost everywhere on [0,1)2, where SR((x,y),g)=âk2+s2â€R2ck,s(g)Wk(x)Ws(y).