Abstract
In the paper is presented existence of an increasing sequence of natural numbers Mν,ν=0,1,..., such that for any ξ>0 there exists a measurable set E with a measure ΟE>1âÎľ, such that for any function fâL1[0,1] one can find a function gâL1[0,1], which coincides with the function f on E, and for any ιâ â1,â2,... the Cesaro means ĎMνι(x,f~), ν=0,1,..., converges to g(x) almost everywhere on [0,1].