

ORIGINAL RESEARCH

LASER-ASSISTED SOCKET PRESERVATION WITH COLLAcone

Yahya Wadullah Mohammed BDS¹, Elham Hazeim Abdulkareem, BDS, MSc., PhD.²

¹Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Anbar, Al-Anbar, Iraq. E-mail: yahya.w.mohammed@uoanbar.edu.iq. ORCID: <https://orcid.org/0009-0007-7719-1588>. Telephone number: +96407716588220.

²Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Anbar, Al-Anbar, Iraq. E-mail: den.elham.h@uoanbar.edu.iq. ORCID: <https://orcid.org/0000-0002-5705-8866>. Telephone number: +96407818906071.

***Corresponding author:** Yahya Wadullah Mohammed, Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Anbar, Al-Anbar, Iraq, yahya.w.mohammed@uoanbar.edu.iq, ORCID: <https://orcid.org/0009-0007-7719-1588>. Telephone number: +96407716588220.

Received: Jul 6 2025; **Accepted:** Aug 2 2025; **Published:** Aug 12 2025

Abstract

Background: Socket preservation is a method for minimising soft and hard tissue loss after tooth extraction. Photobiomodulation therapy (PBMT) can stimulate changes that occur as part of the normal socket healing process. This can preserve socket dimensions and promote ideal outcomes when dental prostheses are subsequently implanted with radiographic assistance.

Objectives: To evaluate the use of diode laser PBMT to accelerate bone healing in extraction sockets treated with collateral prior to dental implant placement using radiography and cone beam computed tomography.

Materials and Methods: We recruited 20 patients with 40 sockets. Twenty sockets were each assigned to the control group and the test group. The control group sockets were treated with collacone only, while the test group extraction sockets underwent PBMT plus collacone application. The split-mouth technique was employed, with the maxillary and mandibular anterior teeth split from the maxillary and mandibular premolar teeth.

Results: All extraction sockets demonstrated good healing with no complications. Ridge height and width reductions were lower in the test group than in the control group. Additionally, the test group exhibited higher bone density values than the control group.

Conclusion: PBMT via diode laser can be safely implemented following tooth extraction. Under clinical conditions, this simple technique can be used as a single-step procedure to preserve sockets successfully.

Keywords: Alveolar bone loss, bone resorption, collagen, socket preservation, enhanced healing process, Low-Level Light therapy.

INTRODUCTION

After tooth extraction, many changes occur in the hard and soft tissues in accordance with the physiological process of socket healing, which involves vertical and horizontal bone loss¹. Alveolar ridge preservation is a method for reducing or arresting dimensional changes after tooth extraction to optimise subsequent prosthesis implantation – particularly dental implants². The aim of preventing the loss of the alveolar ridge is to preserve enough bone to facilitate the placement of dental implants in the optimum position; bone augmentation is not required³. Photobiomodulation

therapy (PBMT), also known as low-level laser therapy, is used to promote wound healing through the application of specific laser wavelengths⁴. Several changes occur in a cell irradiated by a laser of low energy, including metabolic, functional and physiological alterations⁵. PBMT can minimise inflammation by reducing inflammatory mediators, inhibiting prostaglandin and increasing plasminogen⁵. Additionally, it alters the cellular activity of osteoblasts and improves bone healing and regeneration⁶. PBMT may be considered an adjunctive therapy for preserving alveolar sockets⁷.

Cone-beam computed tomography (CBCT) is considered the gold standard tool for accurately measuring socket dimensions⁸. CBCT helps estimate bone density by characterising cortical and trabecular bone architecture and biomechanics through the analysis of grey scale values⁹. Many studies have indicated that laser-treated samples exhibit greater bone density on radiographic evaluation than those in control groups.¹⁰ Bone density can be measured by transferring data in DICOM format to modified software, such as Blue-Sky Plan (MDI Europa Company, Germany), and measuring numerical values from different points as Hounsfield units; the mean of these points approximates the bone density in the selected area^{11, 12}.

Study Aim

This study examined the use of diode laser-based PBMT to accelerate bone healing in extraction sockets treated with collacone before dental prostheses were implanted with the help of radiography.

Materials and Methods

Design of Study

The split-mouth technique was implemented with a total of 20 patients (12 males and 8 females) aged 18–55 years. The Research Ethics Committee of the University of Anbar approved this study (on December 23, 2024, Reference No. 197). All patients signed consent forms. The study was conducted between November 2024 and June 2025.

Patient Selection and Treatment Protocol

Twenty patients with 40 total extraction sockets were divided into a control group and a test group with 20 sockets each. In the control group, a collagen plug was implemented after tooth extraction and sutured. In the test group, the extraction sockets were first treated with diode laser-based PBMT before a collagen plug was placed and sutured. The patients were selected according to the following criteria: being 18–55 years old; non-smokers; demonstrating acceptable oral hygiene; having no history of radiotherapy, chemotherapy or bisphosphonate use; possessing badly decayed, unrestorable bilateral lower and upper anterior teeth; and exhibiting no signs of (a) active infection at the extraction site or (b) active periodontal disease at the treatment segment.

Surgical Procedure

All surgical procedures were performed by the same operator under the supervision of the study supervisor. Local anaesthesia (2% lidocaine hydrochloride and 1.8-ml local anaesthetic carpools with 1:80,000 adrenaline) was applied on both the study and control sides, which were extracted at the same visit. Shortly after the tissues were anaesthetised, atraumatic tooth

extractions were performed. An elevator and forceps were gently applied to minimise trauma to the surrounding bone and soft tissue. After the tooth was extracted, the buccal and lingual bone walls were carefully examined for fractures. Following extraction, the sockets were irrigated with saline to remove granulation. In the control group, following socket curettage and irrigation with pure saline, collacone was placed in the socket and then secured in place using a cross suture (Figure 1).

Figure 1. Collacone secured by cross sutures.

In the test group, following socket curettage and irrigation with normal saline, the socket was treated by laser from three points perpendicular to the occlusal, buccal (labial) and palatal (lingual) surfaces (Figure 2). In the latter group, the laser was placed 1 cm away from the operation site for 180 seconds (60 seconds for each surface). Laser therapy was administered using an 8-mm handpiece and a gallium–aluminium–arsenide (Ga–Al–As) diode laser device (Quicklase, UK). The Quicklase laser has a continuous dual wavelength of 810 nm and 980 nm at a power of 400 W (0.4 w). Both the patient and the operator had their eyes shielded with safety goggles. A cylindrical glass with a height of 10 mm (1 cm) was used to maintain a consistent distance between the laser fibre and the extraction socket. After finishing the laser treatment, we filled the socket with a collagen plug and secured it with a cross, as in the control group (Figure 1). The patient was then taken to the X-ray room, where CBCT was conducted immediately. The following instructions were given to each patient:

1. The small gauze placed after the procedure should be kept in place for 30 minutes.
2. Do not rinse the mouth for the first 24 h.
3. Avoid eating hot food and drinks on the first day. Depend on warm and soft food to avoid disturbing the clot.
4. Rinse the mouth every 24 h with warm salt water for 2 weeks and then switch to 0.12% chlorohexidine gluconate for the next 2 weeks.

5. Make a follow-up appointment for suture removal after 7 days.

The same analgesics and antibiotics were prescribed for all patients (500-mg mefenamic acid tablets as needed and 400-mg cefixime tablets). On the seventh day, when the patient returned to have their sutures removed, we assessed the socket site and scored it according to the healing index. The criteria for this index include suppuration, tissue colour, incision margin, bleeding on palpation and presence of granulation tissue. All patients were followed up after 3 months so CBCT could be reperformed.

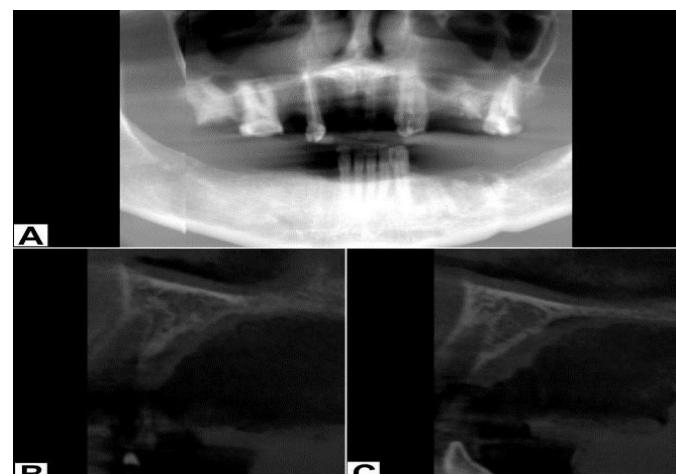
CBCT Analysis

Radiographic CBCT was performed at two time points: immediately after the procedure to provide a baseline image and 3 months for comparison to the baseline (Figure 3). CBCT was used to evaluate variations in the width and height of the ridge and bone density 3 months postoperatively (Figure 4).

1. Measurement of ridge height and horizontal ridge width

We first measured buccal bone height (BBH), lingual bone height (LBH) and horizontal ridge width (HRW). The measurements were taken using the first image as a baseline and after 3 months using similar lines and points as reference. At the highest apex of the extraction socket, a reference point was set up. Next, two reference lines were established: a line that runs vertically through the middle of the socket from the apical reference point. A horizontal line perpendicular to the vertical line that is drawn from the socket's most apical point. The distance between the coronal edge of the socket and the apical reference point, parallel to the vertical reference line, was measured for height along the mid-lingual/palatal and mid-buccal/labial regions. At the coronal aspect of the alveolar crest, parallel to the horizontal reference line, the horizontal ridge width (HRW) was measured. By comparing measurements from two CBCT scans, the mean alveolar ridge resorption (in mm) was computed¹³, as shown in Figure 4.

2. Measurement of bone density


Bone density (BD) was measured by choosing 5 points inside the socket and determining the voxel values at those points. Voxel values represent bone density in comparison with Hounsfield units on computer tomography scans, as shown in Figure 4. These points were located as follows:

- a. Two points on the buccal and lingual surfaces of the sockets (coronally).
- b. Two on the buccal and lingual surfaces of the sockets (middle of the socket).
- c. One of the superior regions of the socket (bottom of the socket).

The average of these five voxel values was calculated as the mean bone density of the freshly produced bone in the extraction sockets. Figure 5, showed the periapical radiographs of dental implant insertion on both the test and the control sides after 3 months.

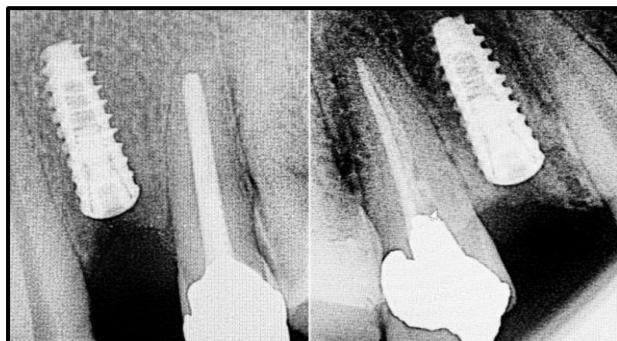

Figure 2. Laser treatment of the studied socket from three points perpendicular to the surface and keeping the distance of 1 cm by cylindrical glass, application of laser from the palatal surface.

Figure 3. CBCT sections taken immediately after tooth extraction of left and right upper lateral incisors, A: A panoramic view, B: A cross-section view for the socket of the upper right lateral incisor, C: A cross-section view for the socket of the upper left lateral incisor.

Figure 4. CBCT radiograph measurement of BBH: Buccal bone height, LBH: Lingual bone height, and HRW: Horizontal ridge width.

Figure 5. Periapical radiographs showing dental implants on both sides of A: the test and B: the control sides.

Statistical Analysis

Statistical analysis was performed using SPSS software (version 26; IBM crop, Armonk, USA). Data were expressed as means and standard deviations, while comparisons were made using paired and independent t-tests. A p-value of less than 0.05 was considered statistically significant.

RESULTS

Of these patients, 15 had teeth extracted in the maxilla (75%), and 5 underwent extraction in the mandible (25%). In general, the mean values decreased in both the control and study groups after 3 months. The mean BBH loss ($0.82 \text{ mm} \pm 0.09$) in the study group was significantly less than that of the control group ($1.1 \text{ mm} \pm 0.14$; $p < 0.001$). Similarly, the study group's mean LBH loss ($0.64 \text{ mm} \pm 0.06$) was significantly less than that of the control group ($0.85 \text{ mm} \pm 0.13$; $p < 0.001$). The study group's mean HRW loss ($0.44 \text{ mm} \pm 0.09$) was significantly less than that of the control group ($0.71 \text{ mm} \pm 0.16$; $p < 0.001$). Correlations of age, gender and jaw type with radiographic measurements (BBH, LBH and HRW) were statistically insignificant within both groups ($p > 0.05$). Conversely, the mean BD value was higher in the study group than in the control group. The difference between the mean BD in the study group (370.06 ± 135.23) and the control group (304.98 ± 137.36) was statistically insignificant ($p = 0.139$), as shown in Tables 1 and 2. Differences by age and gender were statistically insignificant ($p > 0.05$), while differences in jaw type (maxilla vs mandible) within each group were statistically significant ($p < 0.05$).

Table 1. The rate of loss in BBH, LBH, and HRW after three months

Variable	Control group	Study group	p-value
	Mean \pm SD (mm)	Mean \pm SD (mm)	
BBH	1.1 ± 0.14	0.82 ± 0.09	< 0.001
LBH	0.85 ± 0.13	0.64 ± 0.06	< 0.001
HRW	0.71 ± 0.16	0.44 ± 0.09	< 0.001

*SD = Standard deviation, $p < 0.05$.

Table 2. The final measurements of bone density after three months for the control and study groups

Variable	Group	No. of cases	Mean \pm SD (mm)	p-value
Bone density	Control	20	304.98 ± 137.36	0.139
Bone density	Study	20	370.06 ± 135.23	

*SD = Standard deviation, $p < 0.05$.

DISCUSSION

In this study, 15 patients (30 sockets) underwent extraction from the maxilla, and 5 (10 sockets) had teeth removed from the mandible. This reflects the general predominance of extraction sockets in the maxilla; anterior teeth in the maxilla are more frequently indicated for extraction for aesthetic and prosthodontic reasons. The reductions in BBH, LBH and HRW are related to normal alveolar bone resorption after tooth extraction. In this sense, the present study corroborates the results of ¹⁴, which highlighted the dimensional changes in sockets that occur after tooth extraction as the alveolar bone resorbs. BBH decreased more than LBH in this study, corroborating the findings of ¹⁵, which found that the alveolar bone resorbs more buccally than lingually. Buccal/labial bone resorbed more than lingual/palatal bone. This is because the buccal wall is thinner than the lingual wall ¹⁶. Moreover, the lingual wall contains both bundle and lamellar bone, while the buccal wall contains only bundle bone ^{17,18}. The mean BBH loss in the study group was significantly lower than that in the control group. Furthermore, the decreases in LLH and HRW loss were significantly reduced in the study group. This is consistent with findings that PBMT accelerates healing ^{7, 19, 20}.

Regarding gender, men exhibited more buccal bone loss after extraction for hormonal and anatomical reasons. The study is thus consistent with ²¹, which found greater height reductions in men. The losses in LBH and HRW were also greater in males, again corroborating ²¹, and this was also attributed to hormonal differences. In terms of age, the present study's data mirror the results of ²²: That study reported that older patients exhibit greater reductions in bone height, and there was an insignificant relation between age and bone height loss. In this study, jaw type did not correlate with ridge height. The higher reduction in mandibles can be explained by the decreased surface area, lower vascularisation and slower remodelling process compared to the maxilla. Although the mean BD value was higher in the study group than in the control group, the difference was statistically insignificant. Laser treatment to preserve the extraction socket was associated with increased BD in the

study group²³.

Our findings are consistent with recent studies that indicate an optimum of 980 nm for ablation, while 810 nm is ideal for coagulation²⁴. A dual wavelength (980 nm +810 nm) was used to ensure standardisation because the potential laser parameters are wide-ranging. Using a dual wavelength improves ablation and coagulation and produces a decreased thermal effect²⁴. Overall, our study corroborates past findings that low-power diode laser-based PBMT enhances and accelerates healing while promoting bone regeneration²⁵. A laser of 980 nm can alter the cellular activity of osteoblasts and improve bone healing and regeneration⁶. A diode laser can remove inflamed tissue and facilitate biostimulation, enabling bone to regenerate and encouraging osteointegration²⁶.

Our findings corroborate²⁷, which noted a significant negative association between age and BD: As age increases, BD decreases. The present study is also consistent with the results of²², which found an insignificant relationship between bone density and age. Bone diminishes in both quality and quantity with age. These changes occur in the cancellous compartment due to high oxidative stress with advancing age, which increases osteoclast activity within the bone trabeculae²⁸.

CONCLUSION

Photobiomodulation via diode laser can be safely implemented following tooth extraction. Under clinical conditions, it is a simple technique that can be used as a single-step procedure for successful socket preservation. PBMT is a straightforward and cost-effective method when compared with other approaches to socket preservation. However, a larger sample size should be used in future studies to strengthen the statistical results.

DECLARATIONS

Ethical approval: The Research Ethics Committee of the University of Anbar approved this study (on December 23, 2024, Reference No. 197).

Informed consent form: All patients signed consent forms.

Funding: No Funding.

Conflict of interest: The authors don't have any conflicts of interest.

Data availability statement: This paper (as well as its supplemental information files) contains all of the data generated or examined during this study. Upon reasonable request, the corresponding author will provide the generated data and analysis during the current study.

Author contributions: E.H.A. planned the study, and Y.W.M. evaluated the data from the patients. Y.W.M. wrote the Methodology section, did statistical analysis, and added to the literature review. E.H.A. revised the final draft, obtained ethical approval, and provided crucial feedback on the study's setup.

Acknowledgements: We sincerely thank the Department of Oral and Maxillofacial Surgery at the College of Dentistry, University of Anbar, as well as Alaysar Specialised Health Centre of Dentistry and Alasalm Teaching Hospital in Mosul City, for their valuable support and assistance in setting up this study.

REFERENCES

1. Alavi SA, Imanian M, Alkaabi S, Alsabri G, Forouzanfar T, Helder M. A systematic review and meta-analysis on the use of regenerative graft materials for socket preservation in randomized clinical trials. *Oral Surg Oral Med Oral Pathol Oral Radiol*. 2024 Dec.
2. Kalsi AS, Kalsi JS, Bassi S. Alveolar ridge preservation: why, when and how. *Br Dent J*. 2019 Aug 1;227(4):264–74.
3. Avila-Ortiz G, Elangovan S, Kramer KWO, Blanchette D, Dawson D V. Effect of alveolar ridge preservation after tooth extraction: a systematic review and meta-analysis. *Journal of Dental Research*. 2014;93:950–8.
4. Özer H, İnci MA. Effect of low-level laser therapy in wound healing of primary molar teeth extraction. *BMC Oral Health*. 2024 Dec 1;24(1).
5. Rathod A, Jaiswal P, Bajaj P, Kale B, Masurkar D. Implementation of low-level laser therapy in dentistry: a review. *Cureus*. 2022 Sep 5.
6. Lazăr L, Manu DR, Dako T, Mărțu MA, Suciu M, Ormenișan A, et al. Effects of laser application on alveolar bone mesenchymal stem cells and osteoblasts: an in vitro study. *Diagnostics*. 2022 Oct 1;12(10).
7. Rosero KAV, Sampaio RMF, Deboni MCZ, Corrêa L, Marques MM, Ferraz EP, et al. Photobiomodulation as an adjunctive therapy for alveolar socket preservation: a preliminary study in humans. *Lasers Med Sci*. 2020 Oct 1;35(8):1711–20.
8. Fokas G, Vaughn VM, Scarfe WC, Bornstein MM. Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: a systematic review. *Clinical Oral Implants Research*. 2018;29:393–415.
9. Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone-beam computed tomography and the primary stability of dental implants. *Clin Oral Implants Res*. 2012;23(7):832–6.
10. Abdel Mageed H. The effectiveness of 980 nm laser therapy on socket preservation: a preliminary split mouth randomized controlled clinical study. 2019.
11. Ahmed H, Elkholy S, Elsayed K. Radiographic density following grafting with autogenous tooth versus autogenous decalcified dentin in socket preservation: a randomized pilot trial. *Egypt Dent J*. 2020 Oct 1;66(4):2381–7.

12. Li X, Xu Y, Zhou Z, Tang M, Cui J, Han W, et al. Self-cross-linked collagen sponge from the *Alosa Sapidissima* scale for hemostasis and wound healing applications. *Biomacromolecules* [Internet]. 2025 Jan 13;26(1):405–14. doi:10.1021/acs.biomac.4c01211.

13. Abid Yousif F, Saadedeen Abdulrazaq S. Processing the extracted tooth to graft the fresh socket (split mouth prospective clinical study). 2022. Available from: www.jrmgs.in.

14. Udeabor SE, Heselich A, Al-Maawi S, Alqahtani AF, Sader R, Ghanaati S. Current knowledge on the healing of the extraction socket: a narrative review. *Bioengineering*. 2023;10.

15. Parvini P, Sahin D, Becker K, Sader R, Becker J, Schwarz F. Short-term outcomes of lateral extraction socket augmentation using autogenous tooth roots: a prospective observational study. *Clin Oral Implants Res.* 2020 Sep 1;31(9):881–8.

16. Pohl S, Binderman I, Tomac J. Maintenance of alveolar ridge dimensions utilizing an extracted tooth dentin particulate autograft and platelet-rich fibrin: a retrospective radiographic cone-beam computed tomography study. *Materials*. 2020 Mar 1;13(5).

17. Wang YF, Wang CY, Wan P, Wang SG, Wang XM. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nanohydroxyapatite and collagen. *Regen Biomater.* 2016 Feb 1;3(1):33–40.

18. Wang Y, Wang C, Wang S, Cui F. Study on bone regeneration with two different ratios of nano-hydroxyapatite and collagen grafts after tooth extraction in dogs. *Zhonghua Kou Qiang Yi Xue Za Zhi.* 2016 Feb;51(2):98–103.

19. Abd-Elhaleem Othman MA, Zaky AA, Eltayeb EA, Khalil NM. A radiographic and histological study to compare red (650 nm) versus near infrared (810 nm) diode lasers photobiomodulation for alveolar socket preservation. *Sci Rep.* 2024 Dec 1;14(1).

20. Hamad SA, Naif JS, Abdullah MA. Effect of diode laser on healing of tooth extraction socket: an experimental study in rabbits. *J Maxillofac Oral Surg.* 2016 Sep 1;15(3):308–14.

21. Amirkargar R, Shirani G, Mahmoudhashemi H, Khoshzaban A, Hasheminejad M. A comparative study of ridge preservation using calcium sulfate and collagen membrane with and without freeze-dried bone allograft following tooth extraction. *Journal of Osseointegration.* 2018 Mar 2;10(1):11–6.

22. Cadenas-Vacas G, Martínez-Rodríguez N, Barona Dorado C, Sánchez-Labrador L, Brinkmann JCB, Meniz-García C, et al. Calcium phosphate modified with silicon vs. bovine hydroxyapatite for alveolar ridge preservation: densitometric evaluation, morphological changes and histomorphometric study. *Materials*. 2021 Feb 2;14(4):1–16.

23. Križaj Dumić A, Pajk F, Olivi G. The effect of post-extraction socket preservation laser treatment on bone density 4 months after extraction: randomized controlled trial. *Clin Implant Dent Relat Res.* 2021 Jun 1;23(3):309–16.

24. Zhang OL, Yin IX, Yu OY, Luk K, Niu JY, Chu CH. Advanced lasers and their applications in dentistry. *Dentistry Journal.* 2025;13.

25. Suheyb Bilge. Efficacy of diode laser therapy on osseointegration of dental implants: a split-mouth clinical study. *Annals of Clinical and Analytical Medicine.* 2022;13(02).

26. Habash G, Jayash SN. Diode laser assisted horizontal bone defect regeneration in the treatment of peri-implantitis. *Clin Case Rep.* 2021 Mar 1;9(3):1247–52.

27. Sultana S, Hasan MN, Taleb M. The correlation of bone mineral density, body mass index and age. *Asian Journal of Medical and Biological Research.* 2021 Mar 31;7(1):76–81.

28. Negri M, Galli C, Smerieri A, Macaluso GM, Manfredi E, Ghiacci G, et al. The effect of age, gender, and insertion site on marginal bone loss around endosseous implants: results from a 3-year trial with premium implant system. *Biomed Res Int.* 2014;2014