

ISSN Online: 2160-5874 ISSN Print: 2160-5866

The Role of Beliefs, Perception, and Behavioral Patterns in the Evolution of Psychophysical Disorders

Ken Ware

Department of NeuroPhysics Treatment, Neurotricional Sciences Institute, Gold Coast, Australia Email: ware.ken1@gmail.com

How to cite this paper: Ware, K. (2024) The Role of Beliefs, Perception, and Behavioral Patterns in the Evolution of Psychophysical Disorders. *Journal of Behavioral and Brain Science*, **14**, 297-309.

https://doi.org/10.4236/jbbs.2024.1411019

Received: September 1, 2024 Accepted: October 28, 2024 Published: October 31, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

In accounts of the development and progression of psychophysical disorders such as Hereditary Spastic Paraplegia (HSP) and Facioscapulohumeral Muscular Dystrophy (FSHD), the role of beliefs, perceptions, and behavioral patterns has often been overlooked in favor of a genetically determinist paradigm. This paper explores the impact of NeuroPhysics Treatment (NPT) on patients with HSP and FSHD. Through a series of clinical case reports, I demonstrate how intensive four-day NPT sessions can lead to rapid restoration of lost functions, challenging the conventional view of these disorders. I hypothesize that, by modulating the patient's perceptual and behavioral frameworks, NPT facilitates the emergence of healthier patterns, suggesting that environmental and psychological factors significantly influence the manifestation and management of these conditions. These findings indicate that the role of genetic inheritance may be overstated and that beliefs and perceptions could play a crucial role in the evolution of psychophysical disorders. The implications of this research extend beyond the traditional treatment paradigms, advocating for a more holistic approach that integrates the psychophysical dimensions of health and challenges the deterministic perspective of genetic inheritance.

Keywords

NeuroPhysics Treatment, Emergence, Psychophysical Conditions, Perception, Beliefs, Behavioral Patterns, Inheritance, Genetics

1. Introduction

Facioscapulohumeral Muscular Dystrophy (FSHD) is a disorder primarily characterized by progressive weakness and atrophy of the facial, shoulder, and upper arm

muscles. Currently, the most influential account of its cause is that it arises from the misexpression of the DUX4 gene, which is normally suppressed in healthy individuals. Despite advancements in understanding the genetic basis of FSHD, however, the exact mechanisms by which DUX4 expression leads to muscle pathology remain incompletely understood. Additionally, there is considerable variability in disease onset and progression, even among individuals with similar genetic mutations. This suggests that other factors, possibly including epigenetic modifications and environmental influences, may play a significant role in disease manifestation and severity. Current research efforts are focused on developing therapeutic strategies to inhibit DUX4 expression or counteract its deleterious effects. However, effective treatment options remain limited, and no cure is currently available. This understanding of FSHD etiology serves as the foundation from which alternative interpretations and therapeutic approaches, such as those explored in this study, are considered.

For decades, patients presenting with complex psychophysical diseases, often presumed to have a genetic (familial) origin, have shown striking reversals of symptoms during intensive four-day NeuroPhysics Treatments (NPTs). For example, NPT has demonstrated the capacity to modulate perception and beliefs, leading to rapid restoration of lost functions in patients with advanced FSHD and Hereditary Spastic Paraplegia (HSP). These observations challenge the notion that genetic inheritance is the sole cause of these conditions. The current paper accordingly considers several cases of NPT-facilitated recovery from HSP and FSHD to consider their implications for these varying models of the condition. It concludes that the clinical cases considered in this paper suggest that factors other than genetic or epigenetic causes contribute to the emergence and persistence of the conditions. Accordingly, treatment methods focused on these non-genetic components have the potential to alleviate the conditions. The paper closes with therapeutic recommendations deriving from the clinical cases and the hypotheses developed to explain them.

The paper is structured as follows. A brief review of the literature on HSP and FSHD establishes the gap in the research that the current study addresses. I then explain the methodology adopted for this study, including research ethics. The clinical cases are then explained, beginning with an overview of NPT, discussing its application to FSHD, and then describing the specific therapeutic outcomes observed. The following section discusses these findings, with reference to their implications for the genetic model of FSHD etiology. Finally, their implications for an understanding of the basis of the efficacy of interventions such as NPT are considered, and therapeutic recommendations are provided.

2. Literature Review

HSP is a group of inherited neurological disorders primarily characterized by progressive lower limb spasticity and weakness [1]. HSP is genetically heterogeneous, with over 70 genetic types identified [1] [2]. The condition can be inherited in

autosomal dominant, autosomal recessive, or X-linked patterns, with autosomal dominant being the most common [1]. Multiple genetic loci have been associated with HSP, including chromosomes 2p, 14q, and 15q for autosomal dominant forms and 8q for autosomal recessive forms [1]. Pathologically, HSP involves axon degeneration in the corticospinal tracts and fasciculus gracilis fibers [1]. The genetic diversity of HSP poses challenges for treatment development and suggests the potential value of alternative models of and approaches to the condition [2]. While primarily considered a Mendelian disease with over 50 associated genes, non-genetic factors may also play a role in its etiology [3]. Recent research has identified mutations in genes involved in fatty acid metabolism, such as DDHD1 and CYP2U1, which affect mitochondrial function and architecture, leading to increased oxidative stress [4]. This suggests that lipid metabolism disturbances may contribute to HSP pathophysiology. Additionally, abnormal axonal transport has been implicated as a key mechanism in the degeneration of long motor neuron axons in HSP [5]. These findings highlight the complex interplay between genetic and metabolic factors in HSP etiology, emphasizing the need for a broader perspective on potential causes beyond classic Mendelian inheritance [3].

FSHD has been characterized as a genetic disorder primarily caused by dysregulation of the D4Z4 macrosatellite repeat on chromosome 4q35 [6]. Two main types exist: FSHD1, associated with D4Z4 repeat contraction, and FSHD2, linked to SMCHD1 gene mutations [7]. Both types lead to chromatin relaxation and aberrant expression of the DUX4 gene in skeletal muscle, resulting in muscle pathology [6]. The disease is characterized by progressive muscle weakness, typically beginning in the face, shoulders, and upper arms [8]. Genetic and epigenetic factors, including DNA hypomethylation of the D4Z4 array, contribute to disease penetrance and progression [7]. Current research focuses on developing genetic approaches to reduce DUX4 expression or its toxic protein activity as potential treatments for FSHD [9]. However, the complex genetic and epigenetic mechanisms underlying FSHD are not fully understood, and no reliable treatment currently exists [8], again suggesting the potential value of approaches such as those proposed in the current study.

Two studies have examined the effectiveness of NeuroPhysics Therapy (NPT) in patients with psychophysical disorders. One study applied Random Matrix Theory to analyze hereditary spastic paraplegia, revealing that NPT led to significant improvements in motor function by reorganizing the patient's neural dynamics [10]. The second study focused on facioscapulohumeral muscular dystrophy, using Generalized Mutual Information (GMI) analysis to track neural and motor improvements after treatment [11]. Both studies suggest that NPT can significantly enhance physical and neurological functions by optimizing chaotic brain dynamics and motor control. The current study extends on and develops these by focusing on the explanation for the efficacy of the approach in such conditions.

3. Methodology

Research Design

This study reports clinical cases to document and analyze the effects of NPT on patients with FSHD and HSP, complex psychophysical disorders traditionally considered to be caused by genetic factors. This design is appropriate for capturing the detailed clinical experiences of individual patients, particularly when dealing with rare or poorly understood conditions where large-scale clinical trials may not be feasible. It is also suitable for the exploratory nature of this study, which aims to demonstrate the feasibility of non-genetic explanations for the occurrence of the conditions in question by demonstrating their tractability to the therapeutic methods adopted in the clinical cases discussed here. The clinical case report design serves as a valuable tool for hypothesis generation, particularly when studying novel therapeutic approaches. By facilitating such a consideration of alternative explanations for the etiology of the conditions, the case reports provide a basis for the paper's later development of alternative hypotheses for their cause.

The detailed documentation of therapeutic outcomes across several patients can reveal patterns of efficacy and safety, providing preliminary evidence that can guide further research and clinical application. By documenting the detailed experiences and outcomes of individual patients, this design provides valuable insights into the therapeutic potential of NPT and its implications for understanding the interplay between genetic, psychological, and environmental factors in disease manifestation and progression. All case studies have been documented and shared publicly with the patient's consent, reinforcing the validity and reliability of these findings.

Materials and Methods

The NPT methods detailed in this manuscript are derived from a key publication that outlines the theoretical and practical basis of NPT [12]. This foundational work explains how NPT utilizes chaos theory principles to facilitate neuromuscular reorganization and the recalibration of sensory-motor rhythms. These principles are crucial for understanding the therapeutic outcomes observed in the case studies presented in this paper. Thus, this reference is essential to the integrity and depth of the present study's analysis.

The NPT employed in this study involves no direct physical manipulation of the patient. Instead, individuals perform exercises autonomously under the guidance of specialized coaching support. The exercises are standardized across various conditions, meaning that the same therapeutic approach is applied regardless of the patient's age, injury, medical history, or specific disorder. The treatment follows a phased process, with session frequency during the initial phase varying based on the patient's overall condition, ranging from daily sessions to alternate days or even several days apart.

No stretching or warm-up exercises are permitted to maintain the patient's system in its normal resting state and free from perturbations until the NPT process begins. Initial assessment sessions aim to reveal the patient's chronic systemic

condition and their general interaction with and subjective perceptual response to environmental stimuli. As treatment progresses, the specific activities and equipment used are expanded and systematically adjusted based on the patient's response to the initial sessions, in accordance with NPT's unique methodologies. In subsequent treatment phases, more complex exercises are introduced, still utilizing light weights.

Research Ethics

To protect patient confidentiality, this manuscript refers to patients by their initials only. This method aligns with ethical guidelines for maintaining anonymity while discussing case studies. For example, I refer to patients as "Patient K" and "Patient C" instead of using their full names. All cases have been documented with informed consent for the use of their data in scientific publications, and testimonials have been anonymized where necessary.

4. Clinical Cases

Case Study 1: Patient K and Patient C from the McB Family

The McB family has a history of severe HSP across multiple generations. Patient K, aged 57 at the time of treatment, had been diagnosed with FSHD 30 years earlier, at 27 years of age. Patient K exhibited progressively deteriorating symptoms from his mid-40s until his initial presentation at the NeuroPhysics Institute on September 7, 2015. Upon evaluation, he displayed motor symptoms akin to those observed in cerebral palsy, including inwardly turned feet, a narrow-kneed gait, and a limited capacity to lift his legs at the knee, resulting in a stiff-legged walk. Objective analysis using Zebris gait and stance technology confirmed these deficits. Additionally, Patient K demonstrated difficulty keeping his palms open while walking, frequently clenching his hands into fists, particularly in his right hand. His trapezius muscles, especially on the right side, remained consistently tense.

Our preliminary clinical assessment indicated that Patient K was experiencing an Autonomic Nervous System (ANS) crisis, characterized by right hemisphere dominance. Since the left hemisphere controls the right side of the body, a dominance of the right hemisphere suggests reduced energy distribution to the left hemisphere, leading to significant inhibition of the right side of the body through the Sympathetic Nervous System (SNS). This dominance may create a positive feedback loop: increased recognition of HSP symptoms heightens the patient's anxiety, which in turn exacerbates the symptoms.

Long-term cortico-limbic-induced anxiety affects hypothalamic and ANS responses, resulting in sustained SNS activation. Chronic SNS activation disrupts the synchrony of sensory and motor activities, reducing neural complexity. Although short-term SNS activation can transiently affect perception and action until parasympathetic normalization occurs, prolonged activation has more lasting impacts. This phenomenon is well-documented in sports performance, where athletes are trained to maintain emotional control to optimize performance under

stress.

Crucially, SNS activation, whether short- or long-term, is driven by an individual's subjective perceptions of their environment and self. Such perceptions can lead to SNS activation due to either genuine environmental threats or individual-specific perceptions that do not align with the reality experienced by others in the same environment. This subjective interpretation underscores the importance of belief and perception in modulating physiological responses and symptom expression.

These considerations supported the perception that NPT would be a suitable intervention for Patient K. NPT has been demonstrated in previous studies to significantly improve conditions such as muscular dystrophy by leveraging principles associated with chaos theory. Specifically, NPT facilitates the reorganization of chaotic dynamics within the nervous system, promoting beneficial chaos-chaos and chaos-order transitions.

Following NPT treatment, Patient K experienced substantial relaxation of long-term HSP symptoms, achieving immediate improvements in muscle relaxation and significant enhancement in the degrees of freedom of his lower limbs. A video testimonial from Patient K is available at https://vimeo.com/139510641.

FSHD Case Study: Patient BM

Patient BM, a 60-year-old male, had been living with FSHD for over three decades when he presented at the NeuroPhysics Institute on October 13, 2014. His condition included several severe motor impairments: his head habitually drooped towards his right shoulder, accompanied by significant facial muscle weakness, causing drooping of the mouth and loss of normal facial tone and expression. His right trapezius muscle exhibited hyper-vigilance and excessive tension, whereas his left trapezius was notably underactive and low in tone. For several years, Patient BM was unable to hold his head upright for any sustained period. Additionally, he was incapable of making a fist with either hand or clapping his hands together, and his right foot was significantly pronated with chronic spasticity. He also demonstrated poor control over his abdominal and lumbar stability.

In August 2014, Patient BM began an assisted walking program with his physiotherapists. Initially, he made slow progress, but his condition regressed significantly following a viral infection in mid-September 2014. After recovering from the virus, Patient BM resumed his walking program, this time incorporating NPT starting on October 22, 2014. The improvement in his condition following NPT was significant, with a fourfold increase in progress within a month (by November 25, 2014) compared to the 80% improvement observed in the first month of the pre-NPT walking program. The substantial improvements Patient BM experienced over just four days of NPT are noteworthy:

- 1) Head and Neck Control: He regained the ability to hold his head upright and balance on his shoulders, a function he had lost for years.
- **2) Facial Expression:** He could smile and form various facial expressions that had been absent due to muscle weakness.

- **3) Foot Spasticity:** There was a complete relaxation of the spasticity in his right foot.
- **4) Hand Function:** Patient BM could close his hands, bringing his fingers onto his palms, which he had been unable to do for several years.
- **5) Clapping Ability:** He regained the ability to clap his hands together, a capability he reported losing seven years before the NPT intervention.
- **6) Core Stability:** He demonstrated significantly improved support and stability through his abdominal and lumbar regions.

These outcomes suggest that NPT offers significant benefits in managing FSHD symptoms, even in cases considered to be underpinned by genetic factors. The rapid and substantial symptomatic relief observed in Patient BM challenges the traditional genetic causal paradigm of FSHD, indicating that factors beyond genetics—such as the regulation of sensory-motor rhythms and the restructuring of chaotic neural dynamics—may play a crucial role in the disease's manifestation and progression. This case supports the hypothesis that NPT can effectively induce systemic reorganization, leading to improved neuromuscular function.

Generalized Mutual Information (GMI) analysis has demonstrated significant improvements in the patient's pathological condition following NPT. Further analyses, including GMI crossing, EMG, and EEG studies, are ongoing. Preliminary results suggest that NPT can effectively distinguish between normal and pathological conditions and capture dynamic changes during different treatment phases.

Patients C and FM

Similar outcomes were observed in other patients. One such was Patient C (the son of Patient K), aged 27 at the time of treatment, who had been diagnosed with FSHD at 15 years of age. Within four days of NPT, Patient C transitioned from walking stiffly with poor balance to walking normally, experiencing complete limb freedom (see video testimonial: https://vimeo.com/128852227). Another was Patient FM, a 45-year-old female diagnosed with HSP at age 39, who exhibited marked improvement following NPT. Her symptoms, which had escalated significantly after diagnosis, were reduced by 90% over four days of therapy, including the normalization of her previously "frozen" foot (see video testimonial: https://vimeo.com/568688549).

5. Findings and Discussion

The clinical cases described above demonstrate the tractability of HSP and FSHD to the type of therapy administered via the NPT paradigm. NPT focuses on restoring order in the nervous system through top-down interventions intended to address dysregulation. This would suggest that, despite the genetic underpinnings of HSP, factors such as ANS crises and perceptual influences play critical roles in symptom manifestation. The rapid symptomatic relief observed through NPT indicates that psychophysical conditions previously attributed solely to genetic inheritance may also involve modifiable components related to long-term ANS dynamics and subjective perception. These results suggest that factors such as

individual beliefs, perceptions, and behavioral patterns may create initial conditions that contribute to the incubation and persistence of chronic conditions. NPT provides a significant self-administered perturbation to a patient's perceptual framework, allowing new, healthier behavioral patterns to emerge.

In the context of familial and genetic inheritance of psychophysical diseases and disorders, our observations of rapid symptom reversals through NeuroPhysics Therapy (NPT) raise a critical question:

Do patients genetically inherit their complex psychophysical symptoms and conditions, or are they simply adopting and mirroring the behaviors of family members who exhibit similar conditions?

The results achieved using NPT challenge the traditional view that genetics alone is the primary factor in the development of conditions such as HSP and FSHD. Instead, our research and clinical practice suggest that beliefs, perceptions, biases, prejudices, and behavioral patterns play a pivotal role in the incubation and evolution of psychophysical diseases and disorders.

While genetic inheritance has been considered a significant contributor to many psychophysical conditions, the outcomes observed with NPT indicate that environmental and psychological factors are equally, if not more, influential. Francis Collins, a prominent figure in genetic research and former director of the National Institutes of Health (NIH), once remarked, "All illnesses have some hereditary contribution; however, it has been said that genetics load the gun, and environment pulls the trigger". Building on Collins' insights, our findings suggest that it is often the individual's subjective perception of their environment and their deeply held beliefs that ultimately "pull the trigger", activating or exacerbating the underlying genetic predispositions.

In the context of psychophysical disorders such as Hereditary Spastic Paraplegia (HSP) and Facioscapulohumeral Muscular Dystrophy (FSHD), recent research into the role of specialized neurons has revealed significant insights into emotional and behavioral processes. Mirror neurons, for example, are thought to provide a mechanism for action understanding, imitation learning, and the simulation of others' behaviors. Additionally, Von Economo Neurons (VENs) play a crucial role in emotionally processing and assigning value to sensory experiences and social relationships. These neurons work alongside mirror neurons to regulate emotional responses in a manner that reflects the best interests of the individual, serving as "air traffic controllers" for human social emotion circuitry, including moral reasoning. American neuroscientist John Allman and his colleagues have proposed that VENs channel neural signals from deep within the brain's cortex to distant regions, such as Brodmann's area 10 in the frontal polar cortex, which is involved in cognitive dissonance and error recognition. This neural pathway is integral to processes such as self-control and error avoidance, regulated by the Anterior Cingulate Cortex (ACC), and can influence decision-making.

These insights raise the possibility that individuals growing up in families affected by psychophysical conditions may adopt and mirror the symptoms of their

loved ones through emotional attachment, potentially exacerbated by social media feedback loops that reinforce beliefs and magnify symptoms.

In light of such findings and the observations from the clinical cases discussed above, I hypothesize that individuals who grow up in families where psychophysical conditions such as HSP and FSHD are present may develop similar symptoms through a process of emotional attachment and symptom mirroring. The rapid symptom transitions observed in patients undergoing NPT, often within just four days, suggest that these symptoms may not be solely due to genetic factors but also involve significant learned and mirrored behaviors. Social media and support groups may further reinforce these perceptions and behaviors. The feedback feedforward loops within these communities can amplify beliefs about the severity and inevitability of the condition, potentially magnifying symptoms through shared narratives and mutual reinforcement.

6. Therapeutic Implications

Treat the Person, Not the Disorder, A Psychophysical Systems Perspective

"Psychophysical" factors refer to those pertaining to the relationship between one's internal (psychic) and external (physical) worlds, while psychophysics investigates the relationship between physical stimuli and the sensations and perceptions they produce. It has been described as "the scientific study of the relation between stimulus and sensation". Human beings, as complex adaptive systems, are extremely sensitive to initial conditions, with perceptions of both internal and external environments being the most significant factors that give rise to all psychophysical behaviors.

NeuroPhysics Therapy (NPT) takes a holistic approach to treatment, focusing on the individual as a whole rather than isolating the disorder. This method aims to facilitate lasting change and improved well-being by empowering individuals to take control of their healing journey. Through this empowerment, NPT fosters resilience, adaptability, and self-awareness, which are critical factors for sustainable health improvement.

The fundamental principles guiding NPT can be summarized as follows:

- 1) Learning to relax physically, mentally, and emotionally.
- 2) Adjusting position for proper contact points and maintaining symmetrical balance on the equipment.
 - 3) Maintaining upright posture.
 - 4) Performing exercises with eyes closed (recommended).
 - 5) Executing ultra-slow movements to enhance neuromuscular sensitivity.
- 6) Forming and operationalizing the intention to distribute effort and energy throughout the body.
- 7) Exercising executive control to maintain ultra-slow speed and balance, and engaging with varying intensities of random, chaotic, or rhythmic physical movements.

During sessions, patients are encouraged to pause, stop, restart, or modulate

movements according to coaching instructions. They are guided to relax into varying intensities of their movements and, when instructed, terminate movements calmly. They are also taught to respond to specific instructions (e.g. adjust posture, relax, open eyes to observe and rebalance positioning, or respond to emotional cues), helping them maintain a poised balance between engaging with chaotic dynamics and stabilizing their movements during exercises.

Rationale for Ultra-Slow Movements

Ultra-slow movements, integral to the initial stages of NPT, serve a critical diagnostic function for the central nervous system. These slow speeds allow for the detection of neuromuscular imbalances that might be masked at higher speeds. This is analogous to a mechanic listening to an engine's idle state to detect issues that would be hidden during full-throttle operation. By moving light loads slowly with limited degrees of freedom, the nervous system becomes more attuned to its initial conditions, enabling it to adjust and self-monitor. Subsequent behaviors, both during and after therapy sessions, depend on these progressively refined initial conditions.

Patients exhibiting slumped posture or muscle tension are coached to straighten up, relax, and use executive control to correct these issues. If an involuntary motor movement is observed during a repetition, patients are instructed to pause the movement, allowing these dynamics to surface and evolve naturally. Such responses indicate that the patient is beginning to release physical and emotional restraints, facilitating the system's unbridling.

Often, as patients approach a significant release, they report that even a mild weight feels challenging to move. This sensation, coupled with anxiety, reflects the increased effort required to move slowly, thereby engaging the sensory-motor system in elaborating on environmental stimuli. These observations underscore NPT's therapeutic premise: creating conditions that evoke transitions into and out of system-controlled chaos is essential for the system to reorganize itself into a healthier, more balanced state.

Integration of the Psychophysical Brain/Body

NPT recognizes the critical interconnectedness of the brain and body beyond the conventional "mind-body" dichotomy. Upon initiating treatment, it is common to observe significant psychophysical dissociation or cognitive dissonance in patients. NPT works to reintegrate these aspects, promoting a more harmonious relationship between mental and physical states. By fostering a deeper understanding of this connection, individuals learn to better manage stress, emotions, and physical symptoms, leading to improved overall health.

The Central Nervous System (CNS) operates with elegant simplicity, albeit with a complex nature. It receives information from the environment via sensory systems and responds through motor systems. Human behavior is the net 3D psychophysical result of all perceptions an individual has experienced since birth and possibly even before birth. Therefore, altering an individual's existing psychophysical state necessitates assessing and modifying their perceptions.

NPT is based on the understanding that an individual's perceptions, mental state, and physical body are intricately connected. How individuals perceive and interact with their environment profoundly impacts their psychophysical health. Consequently, it is essential to consider factors beyond genetics when assessing and addressing psychophysical diseases and disorders. NPT serves as a method to disrupt existing patterns of perception and behavior, facilitating the emergence of more desirable patterns and thereby improving psychophysical health. This broader perspective advocates for a holistic approach to health, integrating biological, psychological, and behavioral dimensions. By acknowledging the role of beliefs, perceptions, biases, prejudices, and behavior patterns, NPT practitioners and researchers can develop more comprehensive treatment strategies that address the root causes of psychophysical diseases and disorders.

Regardless of the condition's origins, enhancing motor functions involves complex interactions between perception, action, and cognition. From the perspective of NeuroPhysics Treatment, understanding and integrating these domains is crucial for improving functional outcomes. By gaining insight into the neural and psychophysical mechanisms that underline these processes, clinicians can develop tailored interventions that optimize healing and facilitate a successful return to normalized life skills.

The Importance of Noise Reduction in Neurological Health

In Neurologically Compromised Patients (NCPs), increased anxiety levels often amplify symptoms, creating a positive feedback loop. NPT introduces a very slow, self-controlled hormetic-like perturbation to the patient's psychophysical system using resistance exercise equipment in a safe, supportive environment. This process exposes underlying fears and anxieties and identifies rogue sensory perception defaults in response to environmental stimuli. Patients may perceive non-noxious environmental stimuli as noxious, indicating faulty initial conditions that contribute to rogue psychophysical behaviors.

Through NPT, patients learn to modulate their limbic system and its connections, interrupting their rogue perceptual errors. This modulation leads to simultaneous symptoms of relaxation and normalization of cognitive processing. The therapy involves purposefully prescribed perturbations, encouraging patients not to inhibit the emergence of neural tremors but to allow these underlying kinetics to increase chaotically. While initially confrontational, this process helps patients learn to "let go", facilitating the evolution of chaotic dynamics into more organized patterns.

NPT demonstrates that when patients participate fully and embrace the evolving process, desirable changes in the structure of time-dependent dynamics can occur. These changes coincide with increased movement velocity across the body as the system sheds its over-orderliness and reorganizes into higher states of complexity. Disease and disorder, fundamentally, represent a loss of this complexity. By embracing the natural chaotic processes of the body, NPT helps restore order and complexity, leading to improved health outcomes. The therapy has proven highly effective for patients committed to actively engaging in their healing process, offering a

pathway from chaos to order and facilitating the recovery of their psychophysical systems.

The rapid reversal of symptoms in NPT patients challenges the deterministic view of genetic inheritance in psychophysical disorders. Instead, these findings suggest that personal beliefs, perceptions, and behavioral patterns may significantly influence the manifestation and progression of such conditions. By altering these factors, NPT offers a promising therapeutic approach to treating a wide range of psychophysical disorders.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

- [1] Fink, J.K. (2015) Hereditary Spastic Paraplegia. In: Rosenberg, R.N. and Pascual, J.M., Eds., *Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease*, Academic Press, 891-906. https://doi.org/10.1016/b978-0-12-410529-4.00077-2
- [2] Mackay-Sim, A. (2021) Hereditary Spastic Paraplegia: From Genes, Cells and Networks to Novel Pathways for Drug Discovery. *Brain Sciences*, 11, Article 403. https://doi.org/10.3390/brainsci11030403
- [3] Bis-Brewer, D.M. and Züchner, S. (2018) Perspectives on the Genomics of HSP Beyond Mendelian Inheritance. *Frontiers in Neurology*, 9, Article 958. https://doi.org/10.3389/fneur.2018.00958
- [4] Tesson, C., Nawara, M., Salih, M.A.M., Rossignol, R., Zaki, M.S., Al Balwi, M., et al. (2012) Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia. The American Journal of Human Genetics, 91, 1051-1064. https://doi.org/10.1016/j.ajhg.2012.11.001
- [5] Faber, I., Servelhere, K.R., Martinez, A.R.M., D'Abreu, A., Lopes-Cendes, I. and França Jr., M.C. (2014) Clinical Features and Management of Hereditary Spastic Paraplegia. *Arquivos de Neuro-Psiquiatria*, 72, 219-226. https://doi.org/10.1590/0004-282x20130248
- [6] Himeda, C.L. and Jones, P.L. (2019) The Genetics and Epigenetics of Facioscapulohumeral Muscular Dystrophy. *Annual Review of Genomics and Human Genetics*, 20, 265-291. https://doi.org/10.1146/annurev-genom-083118-014933
- [7] Daxinger, L., Tapscott, S.J. and van der Maarel, S.M. (2015) Genetic and Epigenetic Contributors to FSHD. Current Opinion in Genetics & Development, 33, 56-61. https://doi.org/10.1016/j.gde.2015.08.007
- [8] Lim, K.R.Q., Nguyen, Q. and Yokota, T. (2020) DUX4 Signalling in the Pathogenesis of Facioscapulohumeral Muscular Dystrophy. *International Journal of Molecular Sciences*, **21**, Article 729. https://doi.org/10.3390/ijms21030729
- [9] Lim, K.R.Q. and Yokota, T. (2021) Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Frontiers in Pharmacology, 12, Article 642858. https://doi.org/10.3389/fphar.2021.642858
- [10] Conte, E., Ware, K., Marvulli, R., Ianieri, G. and Megna, M. (2016) Verification of the Validity of the NPT Treatment in Hereditary Spastic Paraplegia: An Investigation Performed by Application of Random Matrix Theory. World Journal of Neuroscience, 6, 1-17. https://doi.org/10.4236/wjns.2016.61001
- [11] Ware, K., Conte, E., Marvulli, R., Ianieri, G., Megna, M., Pierangeli, E., et al. (2015)

Case Report: Generalized Mutual Information (GMI) Analysis of Sensory Motor Rhythm in a Subject Affected by Facioscapulohumeral Muscular Dystrophy after Ken Ware Treatment. *World Journal of Neuroscience*, **5**, 67-81. https://doi.org/10.4236/wjns.2015.52008

[12] Ross, S.N. and Ware, K. (2013) Hypothesizing the Body's Genius to Trigger and Self-Organize Its Healing: 25 Years Using a Standardized Neurophysics Therapy. *Frontiers in Physiology*, **4**, Article 334. https://doi.org/10.3389/fphys.2013.00334