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We consider sets of word tuples accepted by multitape finite automata.
We use the known notation for regular expressions that describes languages ac-
cepted by one-tape automata. Nevertheless, the interpretation of the “concate-
nation" operation is different in this case. The algebra of events for multitape
finite automata is defined in the same way as for one-tape automata. It is shown
that the introduced algebra is a Kleene algebra. It is also, shown that some
known results for the algebra of events accepted by one-tape finite automata are
valid in this case too.
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1. Introduction. Deterministic multitape finite automata were introduced by
M. O. Rabin and D. Scott in 1959 [1]. Since then, there were attempts to consider
regular expressions as well as the algebra of events accepted by multitape automata.
Algebra of events accepted by one-tape automata was considered in [2]. Several
attempts most relevant for our consideration are briefly considered below.

B. G. Mirkin [3] has considered a special coding for sets of word pairs
accepted by multitape automata. The paper [3] notes the following: “For simplicity
in the following discussion we will consider only D2 and N2", without any proof
seems not enough for using the suggested coding for n > 2. It is necessary to use
another coding for that case (for example, see [4]) published back in 1980. The latter
coding clearly reflects all dependencies that exist simultaneously in fillings of tapes.

Another consideration of sets of word tuples accepted by multitape automata
was given by P. Starke in [5]. For the deterministic multitape automata the following
result holds true: “A n-ary relation R over W (X) is representable by a finite
deterministic n-tape automaton, if there exists an admissible regular expression T
such that R = Valn(T )". Nevertheless, in the same paper the author mentioned that
“unfortunately there are non-admissible regular expressions T such that Valn(T ) is
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representable by a deterministic automaton". It will be shown below that for any set
of tuples accepted by a deterministic multitape automaton the corresponding regular
expression can be built based on definitions and the notation introduced in this paper.

At the same time it will be shown that there is no need to introduce a special
notation for the regular expression model for deterministic multitape finite automata.
So the existing notation for one-tape automata can be used. The only difference is the
interpretation of the regular expression for the operation of concatenation that should
be changed based on the coding of the alphabet symbols introduced in [4].

Algebra of events for the multitape finite automata and the systems of equa-
tions in the algebra will be defined similarly to the definitions of the algebra of events
accepted by one-tape automata [6]. In particular, an alternative specification of a
deterministic multitape finite automaton via systems of equations in the algebra of
events is suggested. It is proved that the considered algebra is a Kleene algebra.
Consequently, all the related results in [6] are also true in this case.

2. Free Partially Commutative Semigroups. Recall some definitions from
[7]. If X is an alphabet, then the set of all words over X , including the empty word,
will be denoted by FX , and the set of all n-element tuples of words by Fn

X .
Let G be a semigroup with a unit generated by the set of generators

Y = {y1,y2, . . . ,yn}. G is called free partially commutative semigroup, if it is defined
by a finite set of definitive assumptions of type yiy j = y jyi.

Let K : FY → Fn
{0,1} be a homomorphism over the set FY , which maps words

from FY to n-element vectors in binary alphabet {0,1}. The homomorphism K over
the set of symbols of the set FY is defined by the equation:

K(yi) = (a1i, . . . ,ani), where ai j =


1, i = j,
e, yiy j = y jyi,

0, yiy j 6= y jyi.

At the same time K(e) = (e, . . . ,e).
K(yiy j), i 6= j, can be defined in one of the two alternative ways:
1. Right concatenation: K(yiy j) = (a1ia1 j, . . . ,anian j);
2. Left concatenation: K(yiy j) = (a1 ja1i, . . . ,an jani).
The first way was in fact used in [5]. The second way was used in [4] as well

as in this publication. Left concatenation for semigroup elements a = yi1 . . .yik and
b = y j1 . . .y jl is defined in the following way:

K(ab) = K
(
(a1ik . . .a1i1, . . . ,anik . . .ani1),(a1 jl . . .a1 j1, . . . ,an jl . . .an j1)

)
=

= (a1 jl . . .a1 j1a1ik . . .a1i1, . . . ,an jl . . .an j1anik . . .ani1).

As stated in [4], the homomorphism K can be considered as a mapping not
only over the FY , but also over the free partially commutative semigroup G.

3. Regular Expressions. We will consider tupless of binary words for the
element representation in a free partially commutative semigroup that were
introduced in Section 2.

First, let us discuss K(G). Due to the fact that K is a homomorphism, K(G)
itself is a semigroup with X = K(Y ) generators and identity (e, . . . ,e). By Lemma 2
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from [4], any element in K(G) can be represented in the form ki1ki2 . . .kim , where
ki j ∈ X ∀ j. Note that an element may have multiple representations of this form.
Hence, we define an equivalence relation ρK over K(FY ). If p,q ∈ K(FY ), then we
write pρKq if and only if they are the representations of a same element in K(G).
The relation ρK splits K(FY ) into disjoint classes. The class containing an element p
will be denoted by [p]. Obviously, [(e, . . . ,e)] = {(e, . . . ,e)} and [ki] = {ki} ∀ki ∈ X .
These classes will be used to define regular events and regular expressions.

The operation of multiplication for tuples of binary words introduced in the
mentioned section will be considered further as an operation of concatenation for
tuples. Based on the operation of concatenation, the operation of iteration over a
tuple of binary words may be defined similarly to the operation of iteration for words
[2]. The operation of union for a pair of tuples also can be defined similarly to the
operation of union for words given in [2].

Having the operations of a union, a concatenation and an iteration, we can
define notions of regular event (set) and regular expression [2].

A regular event in a partially commutative alphabet X is defined as follows:
1. /0 (empty set) is a regular event in X ;
2. E = {[(e, . . . ,e)]} is a regular event in X ;
3. ∀y ∈ Y {[K(y)]} is a regular event in X ;
4. If P and Q are regular events in X , then so are

i) P+Q = P∪Q;
ii) PQ = {[s] | s = pq, [p] ∈ P, [q] ∈ Q}, where pq is the left

concatenation of p and q;
iii) P∗ = ∪n≥0Pn, where P0 = E, Pn = PP(n−1) for n≥ 1;

5. There are no any other regular events in X .
A regular expression in a partially commutative alphabet X is defined

as follows:
1. /0 is a regular expression, which denotes the regular event /0;
2. K(e) = (e, . . . ,e) is a regular expression, which denotes

the regular event E;
3. ∀y∈Y K(y) is a regular expression, which denotes the regular event{[K(y)]};
4. If p and q are regular expressions in X denoting regular events P and Q

correspondingly, then so are:
i) (p+q), which denotes the regular event P∪Q;
ii) (pq), which denotes the regular event PQ;
iii) (p)∗ = ∪n≥0(p)n, where (p)0 = K(e), (p)n = p(p)(n−1) for n≥ 1,

which denotes the regular event P∗.
5. There are no any other regular expressions in X .
As an illustrating example we consider the following input alphabet:

X = {x1,x2,x3}, where x2x3 = x3x2 and x1x2 6= x2x1, x1x3 6= x3x1.
Using the binary coding considered in the Section 3, the following correspon-

dence between the words in FX and three-element vectors in the binary alphabet
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{0,1} will be obtained:

K(x1) = (1,0,0), K(x2) = (0,1,e), K(x3) = (0,e,1).

If we consider the regular expression

((1,0,0)+(0,1,e)+(0,e,1))∗(1,0,0) = (x1 + x2 + x3)
∗x1,

then we will obtain the set of all words ending with x1.
The regular event corresponding to a given regular expression R will be

denoted as E(R).
For the regular expressions we use the same notation both for one-tape and

multitape automata, but they will have different interpretations.
4. Algebra of Events. Similarly to [2], it can be considered an algebra of

regular events in the case of multitape automata, where the elements of events are
words in the alphabet K(X). This algebra will be denoted with AX .

The tuple ẽ of empty binary words (e, . . . ,e) will be named the empty tuple
and the set E = {[ẽ]} is the empty event.

In addition, let us define a partial order in a natural way. If P and Q are regular
events in a partially commutative alphabet X , then P ≤ Q denotes the set relation
P⊆ Q.

It is evident that the operation of concatenation for tuples, introduced in the
Section 2, will preserve the relations between events that we have in the algebra of
events for the one tape automata [6]. Thus we come to the following theorem.

T h e o r e m . The algebra of regular events for multitape automata is a
Kleene algebra. In particular, for any P,Q,S,Z ∈ (AX , +, ·, ∗, /0, E) all 15 Kleene
axioms hold:

1. P+(Q+S) = (P+Q)+S.
2. P+Q = Q+P.
3. P+ /0 = P.
4. P+P = P.
5. P(QS) = (PQ)S.
6. EP = P.
7. PE = P.

8. P(Q+S) = PQ+PS.
9. (P+Q)S = PS+QS.

10. /0P = /0.
11. P /0 = /0.
12. E +PP∗ ≤ P∗.
13. E +P∗P≤ P∗.
14. Q+PZ ≤ Z→ P∗Q≤ Z.
15. Q+ZP≤ Z→ QP∗ ≤ Z.

Each of this axioms will be proved below.
P r o o f . The axioms 1–4 directly follow from the definition of + operation:

1. P+(Q+S) = P∪ (Q∪S) = P∪Q∪S,
(P+Q)+S = (P∪Q)∪S = P∪Q∪S;

2. P+Q = P∪Q = Q∪P = Q+P;
3. P+ /0 = P∪ /0 = P;
4. P+P = P∪P = P.

To prove the 5th axiom we will use the associativity of the left concatenation
operation.
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5. P(QS) = {[pr] | [p] ∈ P, [r] ∈ QS}
= {[pr] | [p] ∈ P, [r] ∈ {[qs] | [q] ∈ Q, [s] ∈ S}}
= {[pr] | [p] ∈ P, [r] = [qs], [q] ∈ Q, [s] ∈ S}
= {[pqs] | [p] ∈ P, [q] ∈ Q, [s] ∈ S},

(PQ)S = {[rs] | [r] ∈ PQ, [s] ∈ S}
= {[rs] | [r] ∈ {[pq] | [p] ∈ P, [q] ∈ Q}, [s] ∈ S}
= {[rs] | [r] = [pq], [p] ∈ P, [q] ∈ Q, [s] ∈ S}
= {[pqs] | [p] ∈ P, [q] ∈ Q, [s] ∈ S}.

Next:
6. EP = {[ep] | [e] ∈ E, [p] ∈ P}= {[ẽp] | [p] ∈ P}= {[p] | [p] ∈ P}= P.
7. PE = {[pe] | [p] ∈ P, [e] ∈ E}= {[pẽ] | [p] ∈ P}= {[p] | [p] ∈ P}= P.
8. P(Q+S) = {[pr] | [p] ∈ P, [r] ∈ Q+S}

= {[pr] | [p] ∈ P, [r] ∈ Q or [r] ∈ S}
= {[pr] | ([p] ∈ P, [r] ∈ Q) or ([p] ∈ P, [r] ∈ S)}
= {[pr] | [p] ∈ P, [r] ∈ Q}∪{[pr] | [p] ∈ P, [r] ∈ S}
= PQ∪PS = PQ+PS.

9. (P+Q)S = {[rs] | [r] ∈ P+Q, [s] ∈ S}
= {[rs] | [r] ∈ P or [r] ∈ Q, [s] ∈ S}
= {[rs] | ([r] ∈ P, [s] ∈ S) or ([r] ∈ Q, [s] ∈ S)}
= {[rs] | [r] ∈ P, [s] ∈ S}∪{[rs] | [r] ∈ Q, [s] ∈ S}
= PS∪QS = PS+QS.

10. /0P = {[op] | [o] ∈ /0, [p] ∈ P}= /0.
11. P /0 = {[po] | [p] ∈ P, [o] ∈ /0}= /0.

To prove the 12th and 13th equations it is enough to prove that any element in
the left expression is contained in P∗ too.

12. ∀p ∈ E +PP∗⇒ p ∈ E or p ∈ PP∗,
[1] p ∈ E⇒ p ∈ P∗,
[2] p ∈ PP∗⇒ p ∈ {[p1 p2] | [p1] ∈ P, [p2] ∈ P∗}

⇒ p ∈ {[p1 p2] | [p1] ∈ P, [p2] ∈ ∪n≥0Pn}
⇒ p ∈ {[p′] | [p′] ∈ ∪n≥1Pn} ⊆ {[p′] | [p′] ∈ ∪n≥0Pn}
⇒ p ∈ P∗.

13. ∀p ∈ E +P∗P⇒ p ∈ E or p ∈ P∗P,
[1] p ∈ E⇒ p ∈ P∗,
[2] p ∈ P∗P⇒ p ∈ {[p1 p2] | [p1] ∈ P∗, [p2] ∈ P}

⇒ p ∈ {[p1 p2] | [p1] ∈ ∪n≥0Pn, [p2] ∈ P}
⇒ p ∈ {[p′] | [p′] ∈ ∪n≥1Pn} ⊆ {[p′] | [p′] ∈ ∪n≥0Pn}
⇒ p ∈ P∗.

It was proved in [8] that if the previous 13 axioms hold, then axioms 14 and
15 are equivalent to:
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16. PZ ≤ Z→ P∗Z ≤ Z.
17. ZP≤ Z→ ZP∗ ≤ Z.

respectively.
To prove these two axioms the mathematical induction will be used.

16. [1] PZ ≤ Z.
[2] Let us assume that Pn−1Z ≤ Z.
[3] Let us proof that PnZ ≤ Z.

Indeed: {
Pn−1Z ≤ Z
PZ ≤ Z

⇒ Pn−1(PZ)≤ Z⇔ PnZ ≤ Z,

P∗Z = (E +P+P2 + · · ·+Pn + · · ·)Z = EZ +PZ +P2Z + · · ·
Obviously, EZ ≤ Z, and by the induction: PkZ ≤ Z ∀k ≥ 1.
Thus, P∗Z ≤ Z.

17. [1] ZP≤ Z.
[2] Let us assume that ZPn−1 ≤ Z.
[3] Let us proof that ZPn ≤ Z.

Indeed: {
ZPn−1 ≤ Z
ZP≤ Z

⇒ (ZP)Pn−1 ≤ Z⇔ ZPn ≤ Z,

ZP∗ = Z(E +P+P2 + · · ·+Pn + · · ·) = ZE +ZP+ZP2 + · · ·
Obviously, ZE ≤ Z, and by the induction: ZPk ≤ Z ∀k ≥ 1.
Thus, ZP∗ ≤ Z. �

The Theorem is proved and so AX is a Kleene algebra. It was shown in [9] that
the algebra of events for one-tape automata is complete over Kleene axioms, in other
words, any property in the algebra of events for one-tape automata can be induced
from the mentioned 15 axioms.

C o r o l l a r y . Any equation in the algebra of events for one-tape automata
is also true in the algebra of regular events for multitape automata. The opposite is
not always true.

Now let us consider a system of equations of regular events for multitape
automata similarly to the system of equations of regular events for one-tape automata
discussed in [6]. 

X1 = X1S11 +X2S21 + · · ·+XnSn1 +R1,

X2 = X1S12 +X2S22 + · · ·+XnSn2 +R2,
...
Xn = X1S1n +X2S2n + · · ·+XnSnn +Rn,

(1)

where Si j and Ri are given regular events and Xi are unknown events.
P r o p o s i t i o n 1. If [ẽ] /∈ S, then the equation X = XS+R has a unique

solution, and it can be expressed as X = R(S)∗.
P r o p o s i t i o n 2. If the solution of the system of equations (1) is unique,

then it can be found by a successive elimination of unknown variables.
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Both Propositions are analogous to the theorems in the case of regular
expressions for one-tape automata from [6]. They may be proved using the same
technique discussed there, since all the steps are done using the Kleene axioms or
their corollaries.

To illustrate the technique described above, a finite multitape automaton in
Figure is considered.

NMFA for (e,e,10,01)((e,e,01,10)+(10,01,e,e))∗.

The transition function of the considered automaton can be transformed to a
form, displayed in the Table.

Transformed transition function
q1 q2 q3 q4 q5 q6 q7

q1 /0 (e,e,1,0) /0 /0 /0 /0 /0
q2 /0 /0 (e,e,1,0) /0 /0 /0 /0
q3 /0 /0 /0 (e,e,e,e) /0 /0 /0
q4 /0 /0 /0 /0 (e,e,1,0) (0,1,e,e) (e,e,e,e)
q5 /0 /0 /0 (e,e,0,1) /0 /0 /0
q6 /0 /0 /0 (1,0,e,e) /0 /0 /0
q7 /0 /0 /0 /0 /0 /0 /0

It can be rewritten as a system of equations, where the equation i corresponds
to the column i of the Table (i = 1, . . . ,7).

X1 = X1 /0+X2 /0+X3 /0+X4 /0+X5 /0+X6 /0+X7 /0+ ẽ,
X2 = X1(e,e,0,1)+X2 /0+X3 /0+X4 /0+X5 /0+X6 /0+X7 /0,
X3 = X1 /0+X2(e,e,1,0)+X3 /0+X4 /0+X5 /0+X6 /0+X7 /0,
X4 = X1 /0+X2 /0+X3ẽ+X4 /0+X5(e,e,0,1)+X6(1,0,e,e)+X7 /0,
X5 = X1 /0+X2 /0+X3 /0+X4(e,e,1,0)+X5 /0+X6 /0+X7 /0,
X6 = X1 /0+X2 /0+X3 /0+X4(0,1,e,e)+X5 /0+X6 /0+X7 /0,
X7 = X1 /0+X2 /0+X3 /0+X4ẽ+X5 /0+X6 /0+X7 /0.

Solving the system of equations by successive elimination of unknown
variables we obtain:
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X1 = ẽ,
X2 = X1(e,e,0,1),
X3 = X2(e,e,1,0),
X4 = X3ẽ+X5(e,e,0,1)+X6(1,0,e,e),
X5 = X4(e,e,1,0),
X6 = X4(0,1,e,e),
X7 = X4ẽ;



X1 = e,
X2 = (e,e,0,1),
X3 = (e,e,0,1)(e,e,1,0),
X4 =(e,e,0,1)(e,e,1,0)+

+X4(e,e,1,0)(e,e,0,1)+
+X4(0,1,e,e)(1,0,e,e),

X5 = X4(e,e,1,0),
X6 = X4(0,1,e,e),
X7 = X4.

It follows from Proposition 1 that:

X4 = (e,e,0,1)(e,e,1,0)((e,e,1,0)(e,e,0,1)+(0,1,e,e)(1,0,e,e))∗ =

= (e,e,10,01)((e,e,01,10)+(10,01,e,e))∗.

Since the final state of the automaton is q7, the value of X7 is the regular
expression, which describes the considered DFMA. Since X7 = X4, we obtain:
X7 = (e,e,10,01)((e,e,01,10)+(10,01,e,e))∗.
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BAZMA	APAVEN AVTOMATNERI HAMAR KANONAVOR

ARTAHAYTU�YUNNERI VERABERYAL ORO
 ARDYUNQNER

Ditarkvum en bazma�apaven verjavor avtomatneri ko�mic

�ana�vo� ba�eri korte�neri bazmu�yunner: �gtagor�vum � mek

�apavenanoc avtomatneri ko�mic �ana�vo� lezuner� nkaragro�

kanonavor artahaytu�yunneri haytni grela� �: Sakayn, ays depqum

\konkatenacia" gor�o�u�yan meknabanu�yunn ayl �: Sahmanvel �

bazma�apaven verjavor avtomatneri patahuy�neri hanraha�iv� mek

�apavenanoc avtomatneri patahuy�neri hanraha�vi sahmanman

nmanu�yamb: Cuyc � trvel, or nermu�va� hanraha�iv� Qlini hanraha�iv

�: In�pes na cuyc � trvel, or mek �apavenanoc avtomatneri patahuy�-

neri hanraha�vi veraberyal oro� ardyunqner �i�t en na ays hanraha�vi

depqum:


