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TWO RESULTS ON THE PALETTE INDEX OF GRAPHS
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Given a proper edge coloring α of a graph G, we define the palette SG(v,α)
of a vertex v ∈ V (G) as the set of all colors appearing on edges incident with
v. The palette index š(G) of G is the minimum number of distinct palettes
occurring in a proper edge coloring of G. A graph G is called nearly bipartite if
there exists v ∈ V (G) so that G− v is a bipartite graph. In this paper, we give
an upper bound on the palette index of a nearly bipartite graph G by using the
decomposition of G into cycles. We also provide an upper bound on the palette
index of Cartesian products of graphs. In particular, we show that for any graphs
G and H, š(G�H)≤ š(G)š(H).
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Introduction. Throughout this paper, a graph G always means a finite undi-
rected graph without loops, parallel edges and do not contain isolated vertices.
Let V (G) and E(G) denote the sets of vertices and edges of a graph G, respectively.
The degree of a vertex v in G is denoted by dG(v), and the maximum degree of vertices
in G by ∆(G). The terms and concepts that we do not define can be found in [1].

An edge coloring of a graph G is an assignment of colors to the edges of G:
it is proper if adjacent edges receive distinct colors. The minimum number of colors
required in a proper edge coloring of a graph G is called the chromatic index of G and
denoted by χ ′(G). By Vizing’s theorem [2], the chromatic index of G equals either
∆(G) or ∆(G)+1. A graph with χ ′(G) = ∆(G) is called Class 1, while a graph with
χ ′(G) = ∆(G)+1 is called Class 2. There are many other chromatic parameters such
as acyclic, list, strong, vertex-distinguishing chromatic indices of graphs. This paper
is devoted to a relatively new chromatic parameter which is called palette index of a
graph G and denoted by š(G) [3]. It can be defined as follows. Let α be a proper edge
coloring of a graph G. The set of colors of the edges incident to v ∈V (G) is called the
palette of v and denoted by SG(v,α). For every proper edge coloring α of G, define the
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set S(G,α) = {SG(v,α) | v ∈V (G)}, which is the set of distinct palettes with respect
to proper edge coloring α . In 2014, Hornák, Kalinowski, Meszka, and Woźniak [3]
have been studied for the first time proper edge colorings with the minimum number
of distinct palettes, that is, for which the cardinality of the set S(G,α) is as small
as possible. So, the palette index š(G) of G is the minimum number of distinct
palettes occurring in a proper edge coloring of G. In [3], the authors introduced this
parameter and determined the palette index of complete graphs. Moreover, they also
showed that the palette index of a d-regular graph is 1 if and only if the graph is
Class 1. Vizing’s edge coloring theorem [2] implies that if G is d-regular and Class 2,
then 3≤ š(G)≤ d +1, the case š(G) = 2 is not possible, as proved in [3]. Vizing’s
edge coloring theorem also yields an upper bound on the palette index of a graph G
with maximum degree ∆ and without isolated vertices, namely š(G)≤ 2∆+1−2, but
in [4], Casselgren and Petrosyan provided an improvement of the upper bound for
the bipartite graphs and derived the following upper bound on the palette index of
Eulerian bipartite graphs:

š(G)≤ ∑
d∈D(G)

(∆(G)
2
d
2

)
where by D(G) it is denoted the set of all degrees in G.

In [5], Bonvicini and Mazzuoccolo investigated the palette index of 4-regular
graphs and proved that if G is 4-regular and of Class 2, then š(G) ∈ {3,4,5}, and that
all these values are in fact attained. As we know from [6] the computing the chromatic
index of a given graph is an NP-complete problem, that is why determining a given
graph’s palette index become NP-complete, even for cubic graphs. Also this means
that even determining if a given graph has palette index 1 is an NP-complete problem.
Nevertheless, for some classes of graphs it is possible to determine the exact value of
the palette index of these graphs. For example, in [3], it was proved that the palette
index of a cubic Class 2 graph is either 3 or 4 according to whether the graph has a
perfect matching or not.

In this paper, we give an upper bound on the palette index of a nearly bipartite
graph G by using the decomposition of G into cycles. We also provide an upper bound
on the palette index of Cartesian products of graphs in terms of the palette indices of
their factors.

Main Result. In this section we introduce some terminology and notation.
A 2-factor of a graph G, where loops are allowed, is a 2-regular spanning subgraph of
G. A graph G is even if the degree of every vertex of G is even.

Next, we need some additional definitions.

D e f i n i t i o n 1. (Edge Subdivision). Let G be a graph. The edge subdivision
operation for an edge e = uv ∈ E(G) is the deletion of uv from G and the addition
of two new edges e1 = uw and e2 = wv along with the new vertex w. This operation
generates a new graph H, where V (H) = V (G)∪ {w}, E(H) = (E(G) \ {e})∪
{e1, e2}.
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D e f i n i t i o n 2. (Nearly Bipartite). A graph G is called nearly bipartite if
there exists v ∈V (G) so that G− v is a bipartite graph.

D e f i n i t i o n 3. (Cartesian Product of Graphs). Let G and H be two graphs.
The Cartesian product G�H of graphs G and H is a graph such that

• the vertex set of G�H is the Cartesian product V (G)×V (H);
• two vertices (u, u1) and (v, v1) are adjacent in G�H if and only if either;
− u = v and u1 is adjacent to v1 in H, or
− u1 = v1 and u is adjacent to v in G.

We also need a classical result from the factor theory, proof of which can be
found in [7].

T h e o r e m 1. (Petersen’s Theorem). Let G be a 2r-regular multigraph
(where loops are allowed). Then G has a decomposition into edge-disjoint 2-factors.

For a graph G, denote by D(G) the set of all degrees in G, by Dodd(G) the set
of all odd degrees in G, and by Deven(G) the set of even degrees in G, respectively.

T h e o r e m 2. If G is an even nearly bipartite graph, then

š(G)≤ 1+
∆(G)

2
+ ∑

d∈D(G)

(∆(G)
2
d
2

)
.

Moreover, this upper bound is sharp for any odd length cycle.

P ro o f. In the proof of this theorem we follow the idea from [4] (Theorem 2.2).
We first construct a new multigraph G∗ as follows: for each vertex u ∈V (G) of degree

2k, we add
∆(G)

2
− k loops at u

(
1≤ k <

∆(G)

2

)
. Clearly, G∗ is a ∆(G)-regular

multigraph. Then, by Theorem 1, G∗ can be represented as a union of edge-disjoint
2-factors F1,F2, ...,F∆(G)

2
. By removing all loops from 2-factors F1,F2, ...,F∆(G)

2
of

G∗, we obtain that the resulting graph G is a union of edge-disjoint even subgraphs

F ′1, . . .,F
′
∆(G)

2
. Note that for each i

(
1≤ i≤ ∆(G)

2

)
, F ′i is a collection of cycles.

Because G is nearly bipartite, ∃v ∈V (G) so that G− v is a bipartite graph, therefore
for any cycle C from F ′i if v /∈ V (C), then the length of that cycle is even. Clearly,

dG(v) ≤ ∆(G), hence v belongs to at most
∆(G)

2
odd cycles. By using the edge

subdivision operation on
∆(G)

2
edges incident with v and belonging to the distinct

cycles, we will construct a new graph Ĝ that can be represented as a union of edge-
disjoint even subgraphs F ′′1 , . . .,F

′′
∆(G)

2
. For each i ( 1≤ i≤ p), F ′′i is a collection of

even cycles in Ĝ, so we can properly color the edges of F ′′i alternately with colors
2i−1 and 2i. As a result, the obtained coloring α is a proper edge coloring of Ĝ with
colors 1, ...,∆(G).

Now, if u∈V (Ĝ) and dĜ(u)= 2k, then there are k even subgraphs F ′′i1 ,F
′′

i2 , ...,F
′′

ik
such that dF ′′i1

(u) = dF ′′i2
(u) = ... = dF ′′iq

(u) = 2, and thus SĜ(u,α) = {2i1− 1,2i1,
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2i2−1,2i2, ...,2ik−1,2ik}. This means that for vertices u ∈V (Ĝ) with dĜ(u) = 2k,

we have at most
(∆(G)

2
k

)
distinct palettes in the coloring α and thus š(Ĝ) ≤

∑d∈D(Ĝ)

(∆(G)
2
d
2

)
. Let us now consider the graph Ĝ. If e ∈ E(Ĝ) and e is not one

of the subdivided edges
(

the number of subdivided edges is at most
∆(G)

2

)
, then we

can keep the color applied by α and add at most
∆(G)

2
new colors to the remaining

ones, creating at most
∆(G)

2
+1 new palettes in G.

Hence,

š(G)≤ š(Ĝ)+
∆(G)

2
+1.

Now, if G contains a vertex of degree 2, then it means that D(G) = D(Ĝ) and
the proof of the theorem is complete. But if there are no vertices of degree 2, then

D′(G) = D(G) ∪ {2} and š(G) ≤ ∑d∈D(G)

(∆(G)
2
d
2

)
+

∆(G)

2
+

∆(G)

2
+ 1.

In the resulting inequality, we take into account
∆(G)

2
extra palettes that can be

removed, because the graph G does not contain any vertices of degree 2.

From a given nearly bipartite graph G we can construct an even supergraph G′,
which can be represented as a union of edge-disjoint 2-factors. Let us first construct
a new graph G′ as defined in [4] by taking two vertex-disjoint copies G1 and G2
of G and for every odd degree vertex of G1 joining it by an edge with its copy in
G2. Since G1 is a nearly bipartite graph, ∃v ∈ V (G1) such that G1− v is bipartite
graph, therefore G′− v− v′ is bipartite too, where v′ ∈V (G2) is a copy of v ∈V (G1).
Clearly, dG(v)≤ ∆(G′) and dG(v′)≤ ∆(G′). Using the same method as in the proof

of the previous theorem, we obtain that vertices v and v′ belong to at most 2
⌈

∆(G)

2

⌉
odd cycles. We will construct a graph Ĝ as in the proof of Theorem 2. Namely, we

make use the edge subdivision operation on at most 2
⌈

∆(G)

2

⌉
edges incident to v or

v′ that belong to the distinct cycles. By applying the preceding proposition to Ĝ, we
immediately obtain the following.

C o r o l l a r y 1. For any nearly bipartite graph G, we have

š(G)≤ (∆(G)+2)2
⌈

∆(G)
2

⌉
+

⌈
∆(G)

2

⌉
+1.

P ro o f. Consider the graph Ĝ defined above, and a proper edge coloring α

of Ĝ as described in the proof of Theorem 2. For each palette SĜ(u,α) in Ĝ, where
u ∈ Dodd(G), there are at most (dG(u)+1) possible palettes in the restriction of α to
G. Now by switching back from Ĝ to the graph G1 which is the copy of G we will
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create at most
⌈

∆(G)

2

⌉
+1 new palettes.

So we can obtain a general upper bound for nearly bipartite graphs.

C o r o l l a r y 2. For any nearly bipartite graph G, we have

š(G)≤ (∆(G)+2)2
⌈

∆(G)
2

⌉
+

⌈
∆(G)

2

⌉
+1.

Next, we consider the palette index of Cartesian products of graphs. Before we
move on, we recall that the Cartesian product graph G�H decomposes into |V (G)|
copies of H and |V (H)| copies of G. By the definition of Cartesian products of graphs,
G�H has two types of edges: those whose vertices have the same first coordinate, and
those whose vertices have the same second coordinate. The edges joining vertices with
a given value of the first coordinate form a copy of H, so the edges of the first type
form nH (|V (G)|= n). Similarly, the edges of the second type form mG (|V (H)|= m),
and the union is G�H. Below we will use some concepts that were defined in [8].

D e f i n i t i o n 4. Given two graphs G and H, and a vertex y ∈V (H), the set
Gy = {(x,y) ∈V (G�H)|x ∈V (G)} is called a G-fiber in the Cartesian product of G
and H. For x ∈V (G), the H-fiber is defined as xH = {(x,y) ∈V (G�H) | y ∈V (H)}.

G-fibers and H-fibers can be considered as induced subgraphs when appropriate.
In [8], authors define the projection to G, which is the map pG : V (G�H)→ V (G)
defined by pG(x,y) = x. Also we will need the projection to H; pH : V (G�H)→V (H)
defined by pH(x,y) = y.

The Cartesian product of the graphs G and H.

T h e o r e m 3. For any graphs G and H,

š(G�H)≤ š(G)š(H).
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P ro o f. Let G and H be graphs with V (G) = {v1, ...,vn} and
V (H) = {u1, ...,um}. We show the existence of a coloring γ with š(G)š(H) palettes.
Let α and β be proper edge colorings with the minimum number of palettes of
the graphs G and H using color sets C1 = {a1,a2, . . . ,at1} and C2 = {b1,b2, . . . ,bt2},
respectively.

We first color the edges of the G-fibers. Clearly, for any u ∈ V (H), the fiber
Gu is isomorphic to G, hence Gu can be properly colored by colors from color set
C1: ∀(v,u),(v′,u) ∈ V (Gu) if (v,u)(v′,u) ∈ E(G�H), then we define a proper edge
coloring γ of G�H as follows:

γ((v,u)(v′,u)) = α(pG(v,u)pG(v′,u)) = α(vv′) = a,

where a ∈C1.
Next, we color the edges of the H-fibers. Clearly, for any v ∈V (G), the fiber

vH is isomorphic to H, hence vH can be properly colored by colors from color set
C2: ∀(v,u),(v,u′) ∈ V (vH) if (v,u)(v,u′) ∈ E(G�H), then we define a proper edge
coloring γ of G�H as follows:

γ((v,u)(v,u′)) = β (pH(v,u)pH(v,u′)) = β (uu′) = b,

where b ∈C2.
It is not difficult to see that γ is a proper edge coloring of G�H.

Moreover, ∀(vi,u j) ∈V (G�H),

S((vi,u j),γ) = S(vi,α)∪S(u j,β ),

where vi ∈V (G),u j ∈V (H).
Next, we show that the number of palettes induced by γ are equal to š(G)š(H).

Without loss of generality we may assume that

S(G,α) = {S(vi1 ,α),S(vi2 ,α), ... S(vis ,α)} and

S(H,β ) = {S(u j1 ,β ),S(u j2 ,β ), ... S(u js′ ,β )},

where s = š(G) and s′ = š(H). Consider the set of vertices M = {(uik ,v jl )| 1 ≤ k ≤
s,1≤ l ≤ s′}. Clearly, |M|= š(G)š(H) and the palettes of the vertices in this set are
pairwise distinct in case of the coloring γ . From the definition of the Cartesian product
and from the coloring that we have constructed it follows that new palettes apart of
the palettes of the vertices from M can not appear. Chose two vertices from one of the
fibers of the graph G, whose palettes are the same. From the definition of Cartesian
product and the coloring that we have constructed it follows that the palettes of those
vertices will coincide with the palettes of corresponding vertices in every remaining
fiber. This means that it is enough to look at only one of the vertices with the same
palettes. So as a result, we get that for any graphs G,H, there exists the proper edge
coloring γ : E(G�H)→{a1,a2, ...,at1 ,b1,b2, ...,bt2} such that the number of palettes
is equal to š(G)š(H).

Figure shows the proper edge coloring γ of the graph G�H described in the
proof of Theorem 3.

Clearly, 3≤ š(G�H)≤ 4.
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C o r o l l a r y 3. If G and H are regular and Class 1 graphs, then

š(G�H) = 1.

P ro o f. As it was shown in [3], the palette index of a regular graph is 1 if and
only if the graph is of Class 1; hence š(G) = 1 and š(H) = 1. This implies that the
palette index of the graph G�H is equal to 1, by Theorem 3.

The author would like to thank P.A. Petrosyan and H.A. Hovhannisyan for
helpful comments and remarks.
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X. S. SMBATYAN

ERKOW ARDYOWNQ GRAFI PALITRAYI INDEQSI MASIN

Trva� � grafi α-�i�t ko�ayin nerkowm, SG(v,α)-ov n�anakowm en

v∈V (G) gaga�in kic ko�eri bolor gowyneri bazmow�yown�, oronq haytnvowm
en ko�eri vra harakic v-i het: G-i �i�t ko�ayin nerkman depqowm iraric

tarber palitraneri nvazagowyn qanakn anvanowm en G grafi

palitrayi indeqs  n�anakowm š(G)-ov: G graf� kanvanenq hamarya

erkko�mani, e�e goyow�yown owni v ∈ V (G) aynpisin, or G− v graf� erk-

ko�mani �: Ays hodva�owm menq talis enq hamarya erkko�mani G grafi

palitrayi indeqsi verin gnahatakan �gtagor�elov G grafi

nerkayacowm� parz cikleri miavorman tesqov: Menq na talis enq

palitrayi indeqsi verin gnahatakan erkow grafneri dekartyan

artadryali hamar: Masnavorapes, cowyc enq talis, or kamayakan G
 H grafneri hamar te�i owni` š(G�H)≤ š(G)š(H):

Х. С. СМБАТЯН

ДВА РЕЗУЛЬТАТА ОБ ИНДЕКСЕ ПАЛИТРЫ ГРАФОВ

При правильной α-реберной раскраске графа G мы определяем палит-
ру SG(v,α) вершины v∈V (G) как множество всех цветов, появляющихся на
ребрах, смежных с v. Индекс палитры š(G) графа G является минимальным
числом различных палитр, встречающихся при всех правильных реберных
раскрасках G. Граф G называется почти двудольным, если существует
v ∈ V (G), так что G− v является двудольным графом. В этой статье мы
даем верхнюю границу индекса палитры почти двудольного графа G,
используя разложение G на циклы. Мы также даем оценку верхней границы
для индекса палитры декартового произведения графов. В частности,
мы показываем, что для любых графов G и H, š(G�H)≤ š(G)š(H).


