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POWERS OF SUBSETS IN FREE PERIODIC GROUPS
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It is proved that for every odd n≥ 1039 there are two words u(x,y),v(x,y) of
length≤ 658n2 over the group alphabet {x,y} of the free Burnside group B(2,n),
which generate a free Burnside subgroup of the group B(2,n). This implies that

for any finite subset S of the group B(m,n) the inequality |St |> 4 ·2.9[
t

658s2 ] holds,
where s is the smallest odd divisor of n that satisfies the inequality s≥ 1039.
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Introduction. For an arbitrary finite subset S of a given group G, denote by
St the set of all possible products of the form a1 · · ·at , where ai ∈ S. In [1] it is proved
that for an arbitrary finite subset of a free group not contained in any cyclic subgroup
there exist constants c,δ > 0 such that |S3|> c|S|1+δ . S. R. Safin [2] showed that there
exist constants cn > 0 such that for any finite subset S of a free group not contained in
any cyclic subgroup the inequality |St |> ct · |S|[(t+1)/2] holds for all positive integers t.
Other interesting results on additive combinatorics can be found in [3, 4].

Our goal is the following theorem.

T h e o r e m 1. For any finite symmetric subset S of a free Burnside group
B(m,n) and t ≥ 2 the inequality |St |> 4 ·2.9[

t
658s2 ] holds, where s is the smallest odd

divisor of n satisfying the inequality s≥ 1039.

Recall that a relatively free group of rank m in the variety of all groups, satis-
fying the identity xn = 1, is denoted by B(m,n) and is called a free periodic or free
Burnside group of period n and rank m. More simply

B(m,n) = 〈a1,a2, . . . ,am; xn = 1〉.
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Auxiliary Lemmas. Consider the words

w(x,y)
 [x,yxy−1]

and
W (x,y)
 [w(x,y)d ,xw(x,y)dx−1],

where d = 191. Denote

u(x,y)
W (x,y)200w(x,y)W (x,y)200w(x,y)2...W (x,y)200w(x,y)n−1W (x,y)200, (1)

v(x,y)
W (x,y)300w(x,y)W (x,y)300w(x,y)2...W (x,y)300w(x,y)n−1W (x,y)300. (2)

L e m m a 1. Let n ≥ 665 be an arbitrary odd number. If a and b do not
commute in B(m,n) and ap 6= 1, then w(ap,b) 6= 1.

P ro o f. Suppose that w(ap,b) = [ap,bapb−1]
B(m,n)
= 1. According to Theorem

VI.3.1 [5], there exists an element z of order n and integers r and s such that ap = zr

and bapb−1 = zs. From the equality bzrb−1 = zs it follows that b belongs to the
normalizer of the subgroup 〈zr〉B(m,n) . Hence, | 〈zr,b〉B(m,n) | ≤ |〈zr〉 | · | 〈b〉 | ≤ n2.
Any finite subgroup of B(m,n) is cyclic (see VII.1.8 [5]). So, the subgroup
〈zr,b〉B(m,n) = 〈ap,b〉B(m,n) is cyclic. In particular, b belongs in the centralizer of
ap. By Theorem VI.3.2 [5] the centralizer of any non trivial element of B(m,n) is
cyclic. Since the elements a and b belong to the centralizer ap, they lie in the same
cyclic subgroup, and so commute.

The contradiction obtained proves Lemma 1.

L e m m a 2. Let n ≥ 1039 be an arbitrary odd number. If a and b do not
commute in the group B(m,n) and a is conjugate to a power of some elementary
period E of rank γ , then for some p = 2k, where 0 ≤ k ≤ 9, the element w(ap,b)
is conjugate to some elementary period of rank β ≥ γ +1.

P ro o f. Let for some word T we have a = T ErT−1 in B(m,n). Replacing E

with E−1 if necessary, we can assume that 1≤ r ≤ n−1
2

. Let us first show that for

some 186 ≤ s ≤ n+1
2
− 148 and some integer 0 ≤ k ≤ 9 we have the congruence

r ·2k ≡ s(mod n).

Indeed, for 186≤ r≤ n+1
2
−148 one can choose k = 0, and if

186
2k ≤ r ≤ 372

2k ,

where k = 1, . . . ,8, then 186 ≤ r · 2k ≤ 372 ≤ n+1
2
− 148 (since n ≥ 1039).

If
n+1

2
−148≤ r ≤ n−1

2
, then 1≤ n−2r ≤ 295≤ n+1

2
−148 and we can use the

previous reasoning (again replacing E with E−1). Thus, for some p = 2k, 0≤ k ≤ 9,

we get ap = T ErpT−1 = T EsT−1, where 186≤ s≤ n+1
2
−148.

By Lemma 2.8 [6] the period E can be chosen minimized, and by virtue of
VI.2.4 and IV.3.12 [5] we can assume that T−1bT ∈Mγ ∩Aγ+1. By Lemma 2, we
have T−1w(ap,b)T 6= 1 in the group B(m,n), so [Es,T−1bT EsT−1b−1T ] 6= 1 and,
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according to Lemma 3.2 [6], one can specify the reduced form A of the commutator
[Es,T−1bT EsT−1b−1T ], which is an elementary period of some rank β ≥ γ + 1
according to Lemma 7.2 [6].

L e m m a 3. Let n≥ 1003 be an arbitrary odd number. Assume that a and b
do not commute in the group B(m,n), the element a is conjugate of the power of some
elementary period E of rank γ , and for some p the element w(ap,b) is conjugate to
some elementary period of rank β ≥ γ +1. Then W (ap,b) 6= 1 in B(m,n).

P ro o f. By the condition we have a = T ErT−1 for some elementary period E
of rank γ and w(ap,b) =UAU−1, where A is an elementary period of some rank β > γ.

Suppose that W (ap,b) = [w(ap,b)d ,apw(ap,b)da−p]
B(m,n)
= 1. Then by Theorem VI.3.1

[5], one can find an element c of order n and integers t and s such that UAdU−1 = ct

and apUAdU−1a−p = cs. From here, as in Lemma 2, it follows that 〈ct ,ap〉B(m,n) is a
cyclic group. Since the element ct has the order n (because the elementary period A
has the order n and (d,n) = 1), it turns out that some power of the elementary period
E of rank γ is conjugate of some power of elementary period A of rank β ≥ γ +1 in
the group B(m,n). This contradicts Lemma 6.6 [6]. Hence W (ap,b) 6= 1 in B(m,n).

Lemma 3 is proved.

A Theorem on Free Subgroups.

T h e o r e m 2. If n ≥ 1039 is an arbitrary odd number and a and b are two
non commuting elements of the group B(2,n), then for some p = 2k, where 0≤ k ≤ 9,
the words u(ap,b),v(ap,b) freely generate a free Burnside subgroup of the group
B(2,n), where the words u(x,y) and v(x,y) are defined by equalities (1) and (2).

P ro o f. The starting point for proving Theorem 2 is the following assertion,
proved in [7] (see also [8, 9]).

L e m m a 4. Theorem [7]. Let the commutator [Ad , Z−1BdZ] be equal to
the elementary period C of rank α in the group B(2,n, α−1), where A is the mini-
mized elementary period of rank γ , B is the minimized elementary period of rank β ,
Z ∈M α−1 (γ 6 β 6 α − 1), d = 191 and n ≥ 1003 are arbitrary odd numbers.
Then the words

u1
C200AC200A2 · · · An−1C200 and u2
C300AC300A2 · · · An−1C300

are a basis of a free Burnside subgroup of rank 2 of the group B(2,n).

P ro o f. By VI.2.5 [5], the element a is conjugate of a power of some
elementary period E of rank γ ≥ 1 in the group B(2,n). By Lemma 3, for some
word U , for some p = 2k, and for some elementary period A of rank β > γ

we have the qualities w(ap,b) =UAU−1 and W (ap,b) = [UAdU−1, apUAdU−1a−p]
in B(2,n). By virtue of Lemma 2.8 [6], the period A can be considered to be minimized.
By Lemma 3 W (ap,b) 6= 1 in B(2,n). By virtue of VI.2.4 and IV.3.12 [5], we can
assume that U−1apU ∈Mβ ∩Aβ+1. According to 3.2 [6], choose some reduced
form G of the commutator [Ad ,(U−1apU)Ad(U−1a−pU)], which, according to
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Lemma 7.2 [6], is an elementary period of some rank δ ≥ β + 1. By virtue of
relation (3.6) from [6], the commutator [Ad ,(U−1apU)Ad(U−1a−pU)] and its

reduced form G are related by equality G
B(m,n,δ−1)

= t[Ad ,U−1apUAdU−1a−pU ]t−1

for some t ∈ Θ(A,A1) (see Definitions 2.3 and 3.1 [6]), where A1 is a cyclic shift
of the word A. It follows from II.3.5 and II.6.13 [5] that A1 is also a minimized
elementary period of rank γ , while by VI.2.4 and IV.3.12 [5] for some Z ∈Mδ−1∩Aδ

we have G
δ−1
= [Ad

1 ,ZAdZ−1], where Z
δ−1
= tU−1apU. Applying Lemma 4, we conclude

that the words

G200A1G200A2
1G200An−1

1 G200 and G300A1G300A2
1G300An−1

1 G300

freely generate a free Burnside subgroup of rank 2 of the group B(2,n).
It remains to note that Ut−1A1tU−1 =w(ap,b),Ut−1GtU−1 =W (ap,b) in B(2,n) and
consequently we get

u(ap,b) = (Ut−1)(G200A1G200A2
1G200An−1

1 G200)(Ut−1)−1,

v(ap,b) = (Ut−1)(G300A1G300A2
1G300An−1

1 G300)(Ut−1)−1.

Theorem 2 is proved.
Proof of Theorem 1. Let us proceed to the Proof of the Theorem 1.

First, we estimate the word lengths u(x,y) and v(x,y), where

u(x,y)
W (x,y)200w(x,y)W (x,y)200w(x,y)2...W (x,y)200w(x,y)n−1W (x,y)200,

v(x,y)
W (x,y)300w(x,y)W (x,y)300w(x,y)2...W (x,y)300w(x,y)n−1W (x,y)300,

w(x,y)
 [x,yxy−1]

and
W (x,y)
 [w(x,y)d , xw(x,y)dx−1].

In this case, all words will be considered as positive words. Since w(x,y) = xyx−1y−1,
then |w(x,y)|{x,y} = 4 (via |w(x,y)|{x,y} denote the length of the word w in the
group alphabet {x,y}). Similarly, for any positive words A = A(x,y), B = B(x,y)
we have |w(A,B)|{x,y} = 4(|A|+ |B|). Consequently,

|w(ap,b)|{a,b} = 2(p+1). (3)

Further we have

|W (ap,b)|{a,b} = 4(2d(p+1)+1), (4)

and

|u(ap,b){a,b}|= 200n|W (ap,b)|{a,b}+
n(n−1)

2
|w(ap,b)|{a,b}.

Similarly,

|v(ap,b){a,b}|= 300n|W (ap,b)|{a,b}+
n(n−1)

2
|w(ap,b)|{a,b}.

Taking into account the equalities (3), (4), we finally get:

|u(ap,b){a,b}|= 200n(4d(p+1)+1)+
n(n−1)

2
2(p+1), (5)
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|v(ap,b){a,b}|= 300n(4d(p+1)+1)+
n(n−1)

2
2(p+1). (6)

Since d = 191, n≥ 1039 and p≤ 29, from (5) and (6) it is easy to derive the following
estimates:

|u(ap,b){a,b}| ≤ 513n2 +445, |v(ap,b){a,b}| ≤ 513n2 +485 ≤ 658n2. (7)
Recall that, by virtue of Theorem 2, the words u(ap,b),v(ap,b) generate a free

Burnside group of rank 2. By S. I. Adyan’s theorem, the group B(2,n) has exponential
growth. More precisely, according to Theorem 2.15, Chap. VI [5] the set {u,v}k

contains γ(k)> 4 ·2.9k−1 pairwise distinct elements. This means that the set St , where

t ≥ 658s2, contains γ

([ t
658s2

])
pairwise distinct element, where s is the smallest

odd divisor of n, satisfying the inequality s≥ 1039. Thus,

|St |> 4 ·2.9[
t

658s2 ].

Theorem is proved. �
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AZAT PARBERAKAN XMBERI EN�ABAZMOW�YOWNNERI ASTI�AN�

Apacowcva� �, or yowraqan�yowr kent n≥ 1039-i hamar B(2,n) azat
be�nsaydyan xmbi {x,y} xmbayin aybowbeni nkatmamb goyow�yown ownen

≤ 222n3 erkarow�yamb u(x,y),v(x,y) erkow ba�, oronq �nowm en B(2,n) xmbi
azat en�axowmb: Ayste�ic bxowm �, or B(m,n) xmbi cankaca� verjavor
S en�abazmow�yan hamar te�i owni |St | > 4 · 2.9[

t
658s2 ] anhavasarow�yown�,

orte� s-� n-i amena�oqr kent ba�anararn �, or� bavararowm � s≥ 1039
anhavasarow�yown�:

В. С. АТАБЕКЯН, А. Т. АСЛАНЯН, С. Т. АСЛАНЯН

СТЕПЕНЬ ПОДМНОЖЕСТВ СВОБОДНЫХ ПЕРИОДИЧЕСКИХ ГРУПП

Доказано, что для каждого нечетного n≥ 1039 существуют два слова
u(x,y),v(x,y) длины ≤ 222n3 над групповым алфавитом {x,y} свободной
бернсайдовой группы B(2,n), порождающие свободную подгруппу группы
B(2,n). Отсюда следует, что для любого конечного подмножества S группы
B(m,n) выполняется неравенство |St | > 4 · 2.9[

t
658s2 ], где s – наименьший

нечетный делитель числа n, удовлетворяющий неравенству s≥ 1039.
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