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M a t h e m a t i c s

ON A RESULT CONCERNING ALGEBRAIC CURVES
PASSING THROUGH n-INDEPENDENT NODES

H. A. HAKOPIAN

Chair of Numerical Analysis and Mathematical Modelling, YSU, Armenia

Let a set of nodes X in the plane be n-independent, i.e. each
node has a fundamental polynomial of degree n. Assume that
#X = d(n,n− 3) + 3 = (n + 1) + n + · · ·+ 5 + 3. In this paper we prove
that there are at most three linearly independent curves of degree less
than or equal to n− 1 that pass through all the nodes of X. We provide a
characterization of the case when there are exactly three such curves. Namely,
we prove that then the set X has a very special construction: either all its nodes
belong to a curve of degree n−2, or all its nodes but three belong to a (maximal)
curve of degree n−3.

This result complements a result established recently by H. Kloyan,
D. Voskanyan, and H. Hakopian. Note that the proofs of the two results are
completely different.
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Introduction. Denote the space of all bivariate polynomials of total degree
≤ n by

Πn =

{
∑

i+ j≤n
ai jxiy j

}
.

We have that N := Nn := dimΠn = (1/2)(n+1)(n+2).
Denote by Π the space of all bivariate polynomials.
A plane algebraic curve is the zero set of some bivariate polynomial of degree

≥ 1. To simplify notation, we shall use the same letter, say p, to denote the polynomial
p ∈Π and the curve given by the equation p(x,y) = 0. In particular, by ` we denote a
linear polynomial from Π1 and the line defined by the equation `(x,y) = 0.
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Consider a set of s distinct nodes X = Xs = {(x1,y1),(x2,y2), . . . ,(xs,ys)}.
The problem of finding a polynomial p ∈Πn, which satisfies the conditions

p(xi,yi) = ci, i = 1, . . . ,s, (1)

is called interpolation problem.
Denote by p

∣∣
X

the restriction of p ∈Π on X.
A polynomial p ∈ Πn is called a fundamental polynomial for a node

A ∈ X if p(A) = 1 and p
∣∣
X\{A} = 0.

We denote this n-fundamental polynomial by p?A := p?A,X.

D e f i n i t i o n 1. The interpolation problem with a set of nodes Xs is called
n-poised, if for any data (c1, . . . ,cs) there is a unique polynomial p ∈ Πn satisfying
the interpolation Conditions (1).

A necessary condition of poisedness is #Xs = s = N.
Now, let us consider the concept of n-independence (see [1, 2]).

D e f i n i t i o n 2. A set of nodes Xs is called n-independent, if all its nodes
have n-fundamental polynomials. Otherwise, it is called n-dependent.

Fundamental polynomials are linearly independent. Therefore, a necessary
condition of n-independence for Xs is s≤ N.

In this paper we consider n-independence more generally. Namely, we admit
possibility to include in the n-independent set Xs a directional derivative node, denoted
by A(k). We have that p(A(k)) := Dk

a p(A), where p ∈Π, a is a direction, and k ∈ N.
For a node A(k) we assume in addition that

p ∈Πn, p|X = 0 =⇒ Di
a p(A) = 0, i = 0, . . . ,k−1.

The set X∪{A(k)} is n-independent means that X is n-independent and the node
A(k) has an n-fundamental polynomial p = p?A(k) :

p ∈Πn, p|X = 0, Dk
a p(A) = 1.

We say that a node A(k) belongs to a curve q if Di
a p(A) = 0, i = 0, . . . ,k.

In particular A(k) belongs to a line `, if A ∈ ` and a is the direction vector of `.
Let us mention, as it can be readily verified, that all the results we present below

concerning n-independent sets hold true for the above mentioned generalization.
Some Properties of n-Independent Nodes. Let us start with the following

L e m m a 1. (Lemma 2.2, [3]). Suppose that a set of nodes X is n-independent
and a node A /∈ X has an n-fundamental polynomial with respect to the set X∪{A}.
Then the latter set is n-independent too.

Denote the distance between the points A and B by ρ(A,B). Let us recall the
following (see Rem. 1.14, [4]).

L e m m a 2. Suppose that Xs = {Ai}s
i=1 is an n-independent set. Then there is

a number ε > 0 such that any set X′s = {A′i}s
i=1, with the property that

ρ(Ai,A′i)< ε, i = 1, . . . ,s, is n-independent too.
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Next result concerns the extensions of n-independent sets.

L e m m a 3. (Lemma 2.1, [2]). Any n-independent set X with #X < N can
be enlarged to an n-poised set.

Denote the linear space of polynomials of total degree at most n vanishing
on X by

Pn,X =
{

p ∈Πn : p
∣∣
X
= 0
}
.

The following two propositions are well-known (see, e.g., [2]).

P r o p o s i t i o n 1. For any node set X we have that

dimPn,X = N−#Y,

where Y is a maximal n-independent subset of X.

P r o p o s i t i o n 2. If a polynomial p ∈Πn vanishes at n+1 points of a line `,
then we have that p = `r, where r ∈Πn−1.

In the sequel we will need the following

P r o p o s i t i o n 3. (Prop. 1.10, [3]). Let X be a set of nodes. Then the
following two conditions are equivalent:

i) Pn,X = {0};
ii) the node set X has an n-poised subset.

Set d(n,k) :=Nn−Nn−k =(1/2)k(2n+3−k). The following is a generalization
of Proposition 2.

P r o p o s i t i o n 4. (Prop. 3.1, [5]). Let q be an algebraic curve of degree k≤ n
without multiple components. Then the following hold:

i) any subset of q containing more than d(n,k) nodes is n-dependent;
ii) any subset X of q containing exactly d = d(n,k) nodes is n-independent if

and only if the following condition holds:

p ∈Πn and p|X = 0 =⇒ p = qr, where r ∈Πn−k. (2)

Thus, according to Proposition 4, i), at most d(n,k) nodes of X can lie
in a curve q of degree k ≤ n. This motivates the following

D e f i n i t i o n 3. (Def. 3.1, [5]). Given an n-independent set of nodes Xs

with s≥ d(n,k). A curve of degree k≤ n passing through d(n,k) points of Xs is called
maximal.

We say that a node A of an n-poised set X uses a curve q ∈ Πk, if the latter
divides the n-fundamental polynomial of A, i.e. p?A = qr, r ∈Πn−k.

Let us bring a characterization of maximal curves:

P r o p o s i t i o n 5. (Prop. 3.3, [5]). Let a node set X be n-independent.
Then a curve µ of degree k, k ≤ n, is a maximal curve if and only if

p ∈Πn, p|X∩µ = 0 =⇒ p = µq, q ∈Πn−k.
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Next result concerns maximal independent sets in curves.

P r o p o s i t i o n 6. (Prop. 3.5, [6]). Assume that σ is an algebraic curve of
degree k without multiple components and Xs ⊂ σ is any n-independent node set of
cardinality s, s < d(n,k). Then the set Xs can be extended to a maximal n-independent
set Xd ⊂ σ of cardinality d = d(n,k).

Next result from Algebraic Geometry will be used in the sequel:

T h e o r e m 1. (Th. 2.2, [7]). If C is a curve of degree n with no multiple
components, then through any point O not in C there pass lines which intersect C in
n distinct points.

Let us mention that, as it follows from the proof, if a line ` through the point O
intersects C in n distinct points then any line through O, sufficiently close to `, has the
same property.

Finally, let us present a well-known

L e m m a 4. Given m linearly independent polynomials, m ≥ 2. Then for
any point A there are m−1 linearly independent polynomials, in their linear span,
vanishing at A.

A Result and Its Complement. In this paper we complement the following

T h e o r e m 2. (Theorem 2.5, [8]). Assume that X is an n-independent set of
d(n,k− 2)+ 3 nodes with 3 ≤ k ≤ n− 2. Then at most three linearly independent
curves of degree ≤ k may pass through all the nodes of X. Moreover, there are such
three curves for the set X if and only if all the nodes of X lie in a curve of degree k−1,
or all the nodes of X but three lie in a (maximal) curve of degree k−2.

Namely, we prove that the above result is true also in the case k = n−1 :

P r o p o s i t i o n 7. Assume that X is an n-independent set of d(n,n− 3)+ 3
nodes, n ≥ 4. Then at most three linearly independent curves of degree ≤ n− 1
may pass through all the nodes of X. Moreover, there are such three curves for the
set X if and only if all the nodes of X lie in a curve of degree n−2, or all the nodes
of X but three lie in a (maximal) curve of degree n−3.

In the sequel we will use the following

T h e o r e m 3. (Theorem 3, [9]). Assume that X is an n-independent set of
d(n,k− 2)+ 2 nodes with 3 ≤ k ≤ n− 1. Then at most four linearly independent
curves of degree ≤ k may pass through all the nodes of X. Moreover, there are such
four curves for the set X if and only if all the nodes of X but two lie in a maximal
curve of degree k−2.

Proof of Proposition 7. Assume to the contrary that there are four linearly
independent curves of degree≤ n−1 passing through all the nodes of the n-independent
set X with #X = d(n,n−3)+3. Then, according to Theorem 3, all the nodes of X
but three belong to a maximal curve µ of degree n−3. The curve µ is maximal and
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the remaining three nodes of X, denoted by A,B and C, are outside of it: A,B,C /∈ µ.
Hence we have that

Pn−1,X = {p ∈Πn−1 : pX = 0}= {qµ : q ∈Π2, q(A) = q(B) = q(C) = 0} .

Thus, we readily get that dimPn−1,X= dim{q ∈Π2 : q(A) = q(B) = q(C) = 0}
= dimP2,{A,B,C} = 6−3 = 3, which contradicts our assumption. Note that in the last
equality we use Proposition 1 and the fact that any three nodes are 2-independent.

Now, let us verify the part “if”. By assuming that there is a curve σ of degree
n−3 passing through the nodes of X, we readily find three linearly independent curves
of degree ≤ n− 1 : σ ,xσ ,yσ , passing through X. While if we assume that all the
nodes of X but three lie in a curve µ of degree n−3, then above evaluation shows that
dimPn−1,X = 3. Note that till here the proof was similar to the proof of Theorem 2
in [8].

Finally, let us verify the part “only if”. Denote the three curves passing through
all the nodes of the set X by σ1,σ2,σ3. If one of them is of degree n− 2, then the
conclusion of Theorem is satisfied and we are done. Thus, we may assume that each
curve is of exact degree n−1 and has no multiple components.

We start with two nodes B1,B2 /∈ X, for which the following conditions are
satisfied, where the line between B1 and B2 is denoted by `12 :

i) the nodes B1,B2 do not belong to the curves σ1,σ2,σ3;
ii) the set X∪{B1,B2} is n-independent;
iii) the line `12 does not pass through any node from X;
iv) the line `12 intersects each of the curves σ1,σ2,σ3 at n−1 different points.

Moreover, it intersects any two different components of these curves at different
points.

Let us verify that one can find such two nodes. Indeed, in view of Lemma 3,
we can start by choosing some nodes B′i, i = 1,2, satisfying the conditions i) and ii).
Then, according to Lemma 2, for some positive ε any two nodes in the ε neighborhoods
of B′i, i = 1,2, respectively, satisfy the first two conditions.

Next, from these neighborhoods, in view of Theorem 1, we can choose the
nodes Bi, i = 1,2, satisfying the condition iii) and iv) too. Let us mention that to get
the part “Moreover” of iv) we apply Theorem 1 for the curve consisting of all different
components of the curves σ1,σ2,σ3.

In the proof of Proposition we will later need the following

L e m m a 5. Assume that the hypotheses of Proposition 7 hold and assume
additionally that at least one of the following conditions hold:

(a) a nontrivial linear combination of two polynomials from {σ1,σ2,σ3},
denoted by s2, vanishes at B1 and B2 : s2(B1) = s2(B2) = 0;

(b) a nontrivial linear combination of the polynomials {σ1,σ2,σ3}, denoted
by s3, vanishes at B1,B2, and B3 ∈ `12 : s3(B1) = s3(B2) = s3(B3) = 0, and the set
X′′′ := X∪{B1,B2,B3} is n-independent.

Then we have that the statement of Proposition 7 holds.
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P ro o f. Let us start with (b). In view of Proposition 6, we can extend the set
X′′′ till a maximal n-independent set Y ⊂ s3 by adding d(n,n− 1)− (d(n,n− 3)+
3)−3 = 1 node, denoted by B, i.e. Y= X′′′∪{B}.

Thus, s3 is a maximal curve of degree n−1 for the node set Y.
Then, in view of Lemma 4, we can find a nontrivial linear combination s of

σ1,σ2,σ3 such that s differs from s3 and vanishes on X∪{B}.
Now consider the polynomial s`12 ∈ Πn, which vanishes on the node set Y.

By Proposition 5, we conclude that

s`12 = s3`, where ` ∈Π1.

The line `12 differs from `, since s differs from s3. Therefore, we get that

s3 = `12q, where q ∈Πn−2. (3)

Now, by using iii), we obtain that q|X = 0. Hence the statement of
Proposition 7 holds.

(a) Assume, without loss of generality, that s2 := c1σ1 + c2σ2, s2 6= 0,
and s2(B1) = s2(B2) = 0.

Let us show that there is a node B3 ∈ `12 such that s2(B3) 6= 0. Indeed, assume
conversely that s2|`12 = 0. Then, by Proposition 2, we obtain that

s2 = `12q, q ∈Πn−2,

which finishes the proof in the same way as the relation (3).
Now, note that s2 is a fundamental polynomial for B3 ∈X′′′ :=X∪{B1,B2,B3}.

By Lemma 1, the set X′′′ is n-independent.
Then assume, in view of Lemma 4, that s is a nontrivial linear combination

of s2 and σ3 such that s(B3) = 0, implying that s|X′′′ = 0. Thus the hypothesis of (b)
is satisfied.

Next, let us continue the proof of Proposition 7.
By using Lemma 4, consider a nontrivial linear combination of σ1,σ2,σ3,

denoted by s, that vanishes at B1 and B2. Set X′′ := X∪{B1,B2}.
Denote the set of intersection points of the line `12 and the curve s,degs= n−1,

by I := `12∩ s. We have that #I= n−1, counting also the multiplicities. Of course
B1,B2 ∈ I.

Case 1. First consider the case when one of B1,B2, say B1, is a multiple point
of intersection, i.e. Das(B1) = 0, where a is the direction vector of the line `12.

Let us prove that the set Y :=X′′∪{B(1)
1 }=X∪{B1,B2,B

(1)
1 } is n-independent,

where B(1)
1 means the directional derivative node with the direction a at B1.

According to Lemma 1 we need to point out a fundamental polynomial q ∈ Πn,

for B(1)
1 ∈ Y, i.e. q|X′′ = 0 and Daq(B1) 6= 0.

For this end consider a nontrivial polynomial s0 := c1σ1 + c2σ2, s0 6= 0,
which vanishes at B2 : s0(B2) = 0.

In view of Lemma 5 we may assume that s0(B1) 6= 0.
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Then consider a line ` passing through B1 with a direction vector different
from a. One can verify readily that the polynomial q := `s0 is a desired polynomial.
Indeed, we have that q|X′′ = 0. Then we have that

Daq(B1) = Da[`s0](B1)

= (Da`)(B1)s0(B1)+ `(B1)Das0(B1) = (Da`)(B1)s0(B1) 6= 0.

Thus the set Y is n-independent and hence this case can be proved in the same
way as Lemma 5 (b).

Case 2. It remains to consider the case when both B1 and B2 are simple points
of intersection. We have that #I= n−1≥ 3. Consider another point of intersection of
`12 and s : B ∈ I, B 6= B1,B2.

In view of Lemma 5, (b), we may assume the following
Assumption 1. The set X′′∪{B}= X∪{B1,B2,B} is n-dependent.
This here means that p ∈Πn, p|X′′ = 0 =⇒ p(B) = 0.
Now consider two nontrivial linear combinations s1,s2 of σ1,σ2 such that

s1(B2) = s2(B1) = 0.
By Lemma 5, (a), we get that si(Bi) 6= 0, i = 1,2. Assume, without loss of

generality, that si(Bi) = 1, i = 1,2.
Next let us show that si(B) = 0, i = 1,2. Let say i = 1. Consider the polynomial

q := `s1 ∈ Πn, where the line ` passes through B1 and does not pass through B.
We have that q(B1) = q(B2) = 0. By using Assumption 1 and Lemma 1, we get
q(B) = 0, hence s1(B) = 0.

Now we are in a position to show that σ1(B) = σ2(B) = σ3(B) = 0.
Let us show for example that σ1(B) = 0.
Consider the polynomial p = σ1− c1s1− c2s2, where ci = σ1(Bi). We readily

get that p(B1) = p(B2) = 0. Hence, in view of Assumption 1, as above, we get that
p(B) = 0. It remains to note that σ1(B) = p(B) = 0.

Next suppose that the point B is multiple:

s(B) = Das(B) = . . . ,D(k)
a s(B) = 0, k ∈ N.

In view of Lemma 5, (b), we may assume the following
Assumption 2. The set X′′∪{B(i)}, i = 0, . . . ,k, is n-dependent.
This here means that

p ∈Πn, p|X′′ = 0 =⇒ p(B) = Da p(B) = . . .= D(k)
a p(B) = 0. (4)

Now consider the above defined polynomials s1 and s2 with

s1(B1) = 1, s1(B2) = s1(B) = 0, s2(B2) = 1, s2(B1) = s1(B) = 0.

By using induction on k, let us show that

D(i)
a s j(B) = 0, i = 0,1, . . . ,k, j = 1,2. (5)

Let say j = 1. The first step of induction is the above considered case k = 0.
Assume that the case of k−1 is true, i.e. the first k equalities in (5) hold. Let us prove
the last one, i.e. D(k)

a p(B) = 0.
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Consider the polynomial q := s1` ∈Πn, where the line ` passes through B1 and
does not pass through B. We have that q(B1) = q(B2) = 0. In view of Assumption 2,
we get that

0 = D(k)
a [s1`](B) = D(k)

a s1(B)`(B)+ kD(k−1)
a s1(B)Da`(B) = D(k)

a s1(B)`(B).

Since `(B) 6= 0 we conclude that D(k)
a s1(B) = 0.

Now we are in a position to show that

D(i)
a σ1(B) = D(i)

a σ2(B) = D(i)
a σ3(B) = 0, i = 0,1, . . . ,k. (6)

Let us prove say equalities with σ1. Consider the polynomial
p = σ1− c1s1− c2s2, where ci = σ1(Bi). (7)

We readily get that p(B1) = p(B2) = 0. Hence, in view of Assumption 2,
as above, we get p(B) = Da p(B) = . . .= D(k)

a p(B) = 0. It remains to use the relations
(5) and (7).

Hence except the two intersection points B1,B2 ∈ I := `12∩,s all other
n− 3 points, counting also the multiplicities, are common for the three curves
σ1,σ2, and σ3.

From this, in view of the Condition (iv), we conclude that the above three
polynomials σ1,σ2, and σ3 have a common divisor q ∈Πn−3 :

σ1 = β1q, σ2 = β2q, σ3 = β3q, where βi ∈Π2.

Therefore, we have
X⊂ σ1∩σ2∩σ3 ⊂ q∪ [β1∩β2∩β3]. (8)

Now consider two cases for B := β1∩β2∩β3.
Case (a), #B ≥ 4. According to Proposition 1 any subset A ⊂ B with

#A= 4 is 2-dependent. From here we readily obtain that the points of A are collinear.
Hence all the points of B are collinear: B⊂ ` ∈Π1.

Now we readily get that ` is a common divisor of β1,β2, and β3, i.e.
β1 = `1`, β2 = `2`, β3 = `3`,

where `i ∈Π1. Thus, as above, we get
B⊂ `∪ [`1∩ `2∩ `3]⊂ `. (9)

The last relation here we get from the fact that the polynomials σ1,σ2,σ3, and
hence the polynomials `1, `2 `3 are linearly independent and hence `1∩ `2∩ `3 = /0.

Finally, we get from Eqs. (8) and (9) that
X⊂ q∪ `,

or, in other words, all the nodes of X lie in a curve of degree n− 2, namely in the
curve q` ∈Πn−2.

Case (b), #B≤ 3. In this case we obtain from Eq. (8) that all the nodes of X
but ≤ 3 lie in a curve q of degree n− 3. From here we readily conclude that q is a
maximal curve and exactly 3 nodes of X are outside of it.

Thus Proposition 7 is proved. �
Finally note that in view of Theorem 2 and Proposition 7 one can formulate the

following
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T h e o r e m 4. Assume that X is an n-independent set of d(n,k−2)+3 nodes
with 3≤ k ≤ n−1. Then at most three linearly independent curves of degree ≤ k may
pass through all the nodes of X. Moreover, there are such three curves for the set X
if and only if all the nodes of X lie in a curve of degree k−1, or all the nodes of X but
three lie in a (maximal) curve of degree k−2.
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H. A. HAKOBYAN

n-ANKAX HANGOWYCNEROV ANCNO� HANRAHA
VAKAN KORERI MASIN

MI ARDYOWNQI VERABERYAL

Dicowq hangowycneri X bazmow�yown� har�ow�yan vra n-ankax �,

aysinqn yowraqn�yowr hangowyc owni n asti�ani fowndamental bazmandam:
En�adrenq #X = d(n,n− 3) + 3 = (n + 1) + n + · · ·+ 5 + 3 : Ays hodva�owm

apacowcvowm �, or kan amena�at� ereq g�oren ankax ≤ n−3 asti�ani

korer, oronq ancnowm en X bazmow�yan bolor keterov: Menq bnow�agrowm

enq ayn depq� erb aydpisi korer� �i�t ereqn en: Ayn �` apacowcvowm

�, or ayd depqowm X bazmow�yown� owni yowrahatowk ka�owcva�q. kam ir

bolor hangowycner� gtnvowm en n− 2 asti�ani kori vra, kam ir bolor

hangowycner�, baci ereqic, gtnvowm en n − 3 asti�ani (maqsimal)

kori vra:

Ays ardyownq� lracnowm � H. Hakobyani, H. Qloyani  D. Oskanyani

ko�mic verjers apacowcva� mi ardyownq: N�enq, or ays erkow ardyownqneri

apacowycner� ambo�jovin tarber en:

А. А. АКОПЯН

ОБ ОДНОМ РЕЗУЛЬТАТЕ ОТНОСИТЕЛЬНО АЛГЕБРАИЧЕСКИХ
КРИВЫХ, ПРОХОДЯЩИХ ЧЕРЕЗ n-НЕЗАВИСИМЫЕ УЗЛЫ

Пусть множество узлов X на плоскости n-независимо, то есть каждый
узел имеет фундаментальный многочлен степени n. Предположим, что
#X = d(n,n− 3)+ 3 = (n+ 1)+ n+ · · ·+ 5+ 3. В статье мы доказываем, что
существуют не более трех линейно независимых кривых степени ≤ n− 1,
которые проходят через все точки X. Мы характеризуем случай, когда
таких кривых ровно три. А именно, доказываем, что тогда множество X

имеет особую конструкцию: либо все его точки лежат на кривой степени
n− 2, либо все его точки, кроме трех, лежат на (максимальной) кривой
степени n−3.

Результат настоящей статьи дополняет результат, недавно получен-
ный А. Акопяном, А. Клояном и Д. Восканяном. Отметим, что доказатель-
ства этих двух результатов совершенно различны.


