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1. Introduction and Main Results. Let T = [—7, 7] and let C(T) (C(T?))
be the space of continuous 27-periodic functions (in each variable) on R (R?). The
following theorem of H. Bohr is well known (see [[1]):

Theorem 1.1. Forany function f € C(T) there exists a homeomorphism
7(t) of T, i.e. a continuous function with

—n=1(—m)<t(ti)<t(h)<t(m)=7, —T<H<H<m,

such that the Fourier series of the composite function f o 7(¢) is uniformly convergent
onT.

A stronger version of Bohr’s theorem was proved by Kahane and Katznelson
in [2]] by which an unique homeomorphism 7 can be constructed for given compact
subset of C(T).

Theorem 1.2 (J.-P. Kahane, Y. Katznelson [2]). Let

0 €C(0,0), 0=0(0)<w(d)<0(dh)<e, 0<§<sh<o (1)

There exists a homeomorphism 7 of T such that for any f € C(T) with modulus of
continuity @(9, f) < @(0) the Fourier series of the superposition f o 7(¢) is uniformly
convergenton 7.
This Theorem was generalized for multiple Fourier series by Sahakyan [3].
Let C(T?) be the space of functions, continuous and 27-periodic in each variable on
R?. For F € C(T?) we denote (8,F) = sup |F (x1,y1) — F(x2,y2)],
(x1—x2)24(y1 —y2)? <82
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0 < 8 <o, and let S, m(F x y) be a rectangular partial sum of the Fourier series of

F,ie. Spnu(F,x,y) = Z Z ck,j(F ety (x,y)€T?, nm=1.2,...
k=—nj=—m
Recall that Pringsheim convergence of Fourier series is defined as the conver-
gence of rectangular partial sums.
Theorem 1.3 [3]. Forany function ®(8), which satisfies (1), there exists
a homeomorphism 7 of T such that the Fourier series of arbitrary F in the form

F(x,y) = f(t(x),7(y), feC(T?), o(8,f) < a(d) (2)

is Pringsheim uniformly convegent on T2. Moreover, for an arbitrary € there exists a
number N such that ||S, . (F) — F|lc < €, n,m > N, for any function of the form (2).
Hereafter notations of Sahakyan [3] will be used. Let M(T) (M(T?)) be

the space of 27-periodic (in each variable), measurable and bounded functions on
R (R?), and || f||. = sup | f(x)|. We define intervals A? as follows

A? (x,n) := <x—|—62k_1

For A = (a,b) and f € M(T) denote f(A) = f(b) — f(a) and

2k
7r,x+57r>, xeT, kn=1.2,..., 06==I.
n

/2] £(AS
W (f.x) = Zf("](f’”)), xeT, n=12,..., §==I,
k=1
Wa(f):= sup WP(fx), n=12,..
x€T, §==+1

For one-dimensional Fourier series the Salem’s test is well known.
Theorem 1.4 [1).If f€C(T) and

1i_r>an5(f) =0, &=x=l,

then the Fourier series of function f is uniformly convergent on 7'.
In [4]] Golubov has proved the analogue of Salem’s theorem for 2-dimensional
case. To state the theorem we need some more definitions for 2-dimensional case.
Let F € M(T?) and F(A1,Az) := F(x1,y1) + F (x2,y2) — F(x1,y2) — F (x2,y1),
where A; = (x1,y1),A2 = (x2,y2). Then define

[rf] [nf] F (A (x,n), A% (y,m))

W,f},;‘sz (F,x,y) :=

k=1 j=1 kj ’
where (x,y) €T?, n,m=1,2,..., &,8 ==1. Analogously, as in 1-dimensional
case, we define
Wn,m(F) = sup {Wal (F7x7y> +Wn31((F7'7y)7x) +Wn(1sz((va7')7y)}'

(x.y)eT?, §,6,==%1

Theorem 1.5 (Golubov, [4]). Fourier series of functions F € C(T?), for

which lim W, ,(F) = 0, is Pringsheim uniformly convergent on T2.
n,m—yoo

Remark I.1. Asnoted in [3]], analogue of Theorem 1.3 for multidimen-
sional case holds and homeomorphism 7 can be constructed independently from
dimension.
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For F € M(T?), x,y,a,b € T denote

18] B 3
N F(Ik7A])| N |F(Ik7y)| ’F(XaAj)‘
Va V) = . s
#3) k=1 Z'1 kj +1;'1 k " i=1 J
where [, = (x+ (k—1)a,x+ka), Aj=(y+(j—1)b,y+ jb). Next, denote
Vi(F) := sup Vap(x,y), V(F):=supVu(F).
|al,|b|<h,(x,y)eT? h>0

T
It’s easy to see, that if max (— —) < h, then W, ,,(F) < V,,(F). This means that the
m
result of Theorem 1.5 will hold when hm Vh( )=0.

2 27
For ty,s0 € T, naturals N,M, we define hy = INTT hy = M1 and
=1 =to+ihy, sj=s=so+jhu, i,j=0,%1,... (3)

For given 27-periodic in each variable function F(x,y), (x,y) € R?, we denote
by Iym(F,x,y) the unique trigonometric polynomial with degrees of N,M in x,y
respectively:

INMny Z Z CNMlel[J.y
v=—Nu=—-Mm

which coincides with F at the points (1;,s), i.e.
IN7M(F,l’i,Sj):F(tl‘,Sj), l,]ZO,ﬁ:l,

Partial sums of Iy y(F) forn=0,1,....,N, m=0,1,...,M are defined as follows:

n m

Iﬁ%(ﬂxd) = Z Z CNM v ity _
’ V=—nlu=—m
1
= = T2F<I,S)Dn(x—I)Dm(y—S)da)zN+1(t)dw2M+1(s) = 4

= [ F Gy DA D($)d B 1 ()15,

where oy +1(1) (@r+1(s)) is a left continuous step-function having jumps Ay ()
at the points ; (s;), and Won41 () = Won1(x+1),  Oopy1(s) = Qop1 (Y +5).
The main results of this paper are the following theorems.
Theorem 1.6.1f FcC(T?) and lim W, (F) =0, then the polyno-
nm—yoo

mials I,/lv,,ﬁw(F) are uniformly convergent on 72 to F, as n,m — oo, n <N, m < M.
Theorem 1.7. For any function ®(J) in the form there exists
a homeomorphism 7 of T such that for any function F in the form

F(x,y) = f(t(x),7(y)), fe€C(T?), o(5,f) < a(5), (5)
the polynomials I,IX M (F) are uniformly convergent on T2 to F, as n,m — oo,

n <N, m < M. Moreover, for an arbitrary € > 0 there exists a number K such that
||INM( F)—F|c<e€, n,m>k,forany function F in the form .
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2. Auxiliary Results.
Lemma 2.1. For any function ¢ € M(T)

;/T¢(x+ 0 o (1) = 6(3) + O (0).

where

0,(0) = W) +0 (.0 ) +o(1)- 9]l

and the quantity o(1) depends on n,x, N and tends to 0 as n — oo uniformly inx € T
and N > n.

Proof. Itis well known (see [5]], Ch. X) for one dimensional trigonometric
interpolation polynomials I2Y (f) that ’}ggo I¥(f,x) = f(x), if £ is of bounded variation

and x is a point of continuity. On the other hand, by Theorem 1 in [6],

IY(f,x) /f SmmdeNﬂ( t)+o(1).

Obviously, setting f = 1 yields

= [ ot o) - 90 =
1
:*/T [0(x+1)— ()]

T
It is enough to estimate the integral

2
|

y(t) <ot¢), 0<t<m.

sinnt

dopy 1 (1) +o(1) - ¢ (x).

sinnt
[@(x+1) )} dany1(t).
Denote y(t) := ¢(x+1) — ¢(x) and observe that

Hence,

1 /7 sinnt
1= [ w0 ™ dowi (1) =
TJo t

1 (M smm smm
:E/o y(t) dooy1(t)+ = / ” dooy (1) =111 + .

The first integral can be easﬂy estimated as follows:

L < — ! (Z + 1> C()(hn,(l))nh/v < 27T(1)(hn,¢)
N

For the second integral we need more notations. Put

ol SR e R v R
P1 hN , 41 pth ) hM y 42 thM )

where [d] is the integer part of a. Denote

/=104 (jpr1+ihy, i=12,....p1, j=0,1,... (6)
ol =so+(py+k)hy, k=12,....po, [=0,1,...
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To estimate I, we divide the interval [h,, 7] into intervals [h,,q;pi1hy]| and
[g1p1hn, ]. The integral on the second interval can be estimated in the exact same
way as the one on [0,4,]. Hence, we need to estimate the integral on [h,,q;p1hy],
which can be represented as a finite sum as follows:

q1pihy sinnt q1-1 pi smn‘L’
[ w0 dowan = ¥ Y vl . 9
n j 1i= I

We fix i and proceed with the sum across j. Applying the Abel summation formula,
we get

]Z, smn‘c Iy =

() ("

- ]; 7/t

w(f‘“ 1)

l

0" 'y =0+, (8)

] Q’ hy +
where
j
=) sinnt].
r=1

In [6] (p. 551) it is proved that |Ql]] < 2. Hence,

]l

peAVlle o and piiy <2

(g1 —1)pihy

T T 2n+1
—l=|—|-1>|—|—-1= =n—1.
a-t= o)1= [ = )

We divide J; into two parts as follows:

a2 oy — (el ™1
th Z[‘I/(Ti) ‘_V(Tl )]thzﬁ-

4 J
Jj=1

)

as

T/

i i

T:

1

noy [w(r;') we)

j=1
L TR I B B
+ Y W) | 5 - | @ =T+ (10)
Jj=1 T
The estimation of J; ; is straightforward:

q1—2 J J+1
|J |< Z ’ll’ T W(Tt )’
-1 p1jhn

0/|hy and  pilJ1.1] = O(W,(9)). (11)

For J; , we have

\P1Ji2|=p1 qliz w (e )pihy o'n qlzz f+1)| [IHZ" Jw( ) o)
| j= S Dpikwpih o = 00+ T o G+
0 2+
+2 MScw(pthln”7¢)+0(1)'Hllfllm. (12)

j=[Inn]+1 ](]+ 1)
From (B)—(12)) we get the desired estimate for the integral in (7). O
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Lemma 2.2. For any function f € M(T)

&)= 5 [ F0e Mo < (w (r.5)+ 'f”"") ,

n n

where C is an absolute constant.

P roof. Technique of the proof is very similar to the one in previous Lemma.
We divide the interval [0, 7] into three subintervals [0, A,), [h,, p1g1hy] and [p1q1hy, T
(the integral over the interval [—7,0] can be estimated similarly). Integrals on the
small intervals are easily estimated. We have

1 Iy i h hn }
— [ fl)e ™M dany (1) < S~ <+1> £l < |J;H

271 Jo - % hy
The integral on the third interval is estimated in the exact same way. We now turn to
the integral on interval [k, p1q1hy]. As in the previous Lemma we write this integral

as a sum:
P1g1hn q1—1 pi

= ft)e Mdom i () =hy Y, Y f(5)e .
h = =
n j=1r=1
Again, we fix r and consider the sum over j =1,...,q; — 1. Applying the Abel
summation formula, we get:
Qb -z . .
W Y F(ED)e ™ =y Y [F(t) — £ AT+ (0 an T,
J=1 J=1

; J & . ’e—inpth(j—i-l) _ 1‘ 1
where A] = )" e”"%. Notice that |A/| = ————— = <1,
k=1 le=inpihy — 1| 2sin (—"’}hN)
because
T _ npihy p1 P p1 n T
- > >n +1)hy >n h, = . T>—.
P T L T ) e B PR K
-t n=2 . 4
Consequently, G < iy ¥ f(sh)e ™| < |pihw ¥ [F(5)) — (5 )Jai| +
=1 =1

n

+ \pthf(rﬁ“‘)A?“‘ ‘ <C <w (f, %) n ”f”""> .0

Denote

1 1
=————, 0<|f|< 0)=0.
sany 0 0<HSE 8(0)

g(t):

Lemma 2.3. There exists an absolute constant K > 0 such that for any
function F € M(T?) and (x,y) € T?

sinnt

/T2F(x+fvy+5)g(s)76’imsdwzzv+1(f)dahM+1(S) <K-Upm(F),

where

Inn  Inm
Un,m(F) = Wan(F)-i-(D 7+77F +Yn,m||FH°°
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and ¥, — 0 as n,m — o uniformly on (x,y) € T?, N >n, M > m.
P roof. The proof of the Lemma follows from Lemmas 2.1 and 2.2. Using
Lemma 2.1, we get

/F(x+t,y—|—s)
T

On the other hand,

sin

4 (1) = F(y+5) + (U (F(,y+9)))

F (3 +9) = WP (4540 (5 F ) ) PGy 9o

where 7),, depends on n,x, N and tends to 0 as n — oo uniformly inx € T and N > n
as shown in Lemma . Hence,

Inn  Inm
UnF (3 9) < Won(F) 40 (142 F ) 4 [Fll < Upn(F).

Using the previous inequality, we obtain

[ Fary+s
T

So, we need to estimate the Fourier coefficients of the function u(s) := F (x,y+s)g(s).
We have

sin

tntdszH (1) = F 6,y +5) +O(Unm(F)).

lu(s+h)—u(s)] < |F(x,y+s+h)—F(x,y+s)|-|g(s+h)|+
+F(x,y+s)]-g(s+h) —g(s)] <
18]leo - (A, F) +[[Fleo - (s +h) — g(s)]-

IN

Hence, Lemma 2.2 yields

ﬁ%ﬁéCP%mZ)ﬂw““Mm]§Cﬂ?(ﬂ2)+ww”+1}

m m m

The absolute value of the integral / OUnm(F))g(s)e™ dwnpi1(s) is esti-
T

mated straightforwardly as g is bounded on 7 and ||¢"|| = 1. The result of the
lemma follows from the last two estimates. U
Remark 2.1. Itiseasy to see that the Lemma holds, if g =1.
3. Proof of the Main Result.
Lemma 3.1.Forany F € M(T?) and any node set ,

sinnt sinms

daon11(t)dopr41(s)+
+O(Uym(F)).

1
D F ) = = [ Pletry+s)s()

P roof. We have that

1 ~ ~
I (Frx) = ?/TzF(x+t7Y+s)Dn(t>Dm(s)dw2N+l(t)deM—H(S)7

sin(N+3) _ sinNt

1
+ ¢(t) sinnt + — cosnt.
2sin 1t ) 2

where Dy (1) =
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Consequently,

sinnt  sinms

() = [ Pl +s) A1 (1) dBras s (5) +

sinnt

1 ~ ~
+ /ZF(x+t,y+s) [g(s) sinms + 2cosms] dany+1(t)doyp+1(s) +

sinms

1 ~ ~
+ / F(x+t,y+s) [g(t)smm‘—i—zcosnt} dapyi1(t)dop+1(s) +
+ / (x+t,y+s) [ sinnt + cosnt]
72

s)sinms + = cosms] daoy1(t)dd1(s) =

sinnt sinms
= /FX—I-t s) . dwoy1(t)dony41 (s +Zlnm7p

and the result follows using Lemma 2.3 for p = 1,2 and Lemma 2.2 forp=3. O
Lemma 3.2.Forany F € M(T?) andanynodeset,

1
7/ F(X—i—l‘,y—i—S)

n? Jr2

sin I’lt sinms

da)2N+1( )d(T)ZM-H(S) :F(xvy)"i_O(Un.,m(F))'

Proof. Obviously it is sufficient to prove the Lemma in the positive quad-
rant. Denoting ¢ (¢,s) = F(x+1,y+s) — F(x,y), we have

sm nt sinms hm  hn Ty i
/ / o(t, Aoy 1 (t)d o1 (s / / +/ / —l—/ / +
q2p2hm @p2hy pqipihy 6
- / / / / + / =Y I (13)
q2p2hy J hy i qipihy - Jhy hy k=1

We estimate the integrals I, seperately. For p = 1 we have

hy, hi
‘I]’ < +1 — 41 ) nmhyhy @ F,\/h%-i-h,zn <
hN hM
< C@(F,\/h%—l-h,%l)ZO(Umm(F)). (14)

For p =2, using Lemma 2.1, we have

o
Bl = | o)™ P by () 5)| =
hy Q3 T
= /0 su;nt/h ¢(Zas)smmsd(02M+1()dwzzvﬂ(f) <
hy Qi
< | [T U (P (et oyt Do ()] < (15)
< <ZZ]+1> nhNO(Un,m(F)) = O(Un.,m(F))‘
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The proof for p = 3 is exactly the same as in the case p = 2. When p = 4 we have
(the case p = 5 is similar)

s1nnt sinms
o= | [ [ 2 dony 1 (1)d o 1 (5)| <
1’2
T sinms
= /q21 . O[Un(F (x+-,y+s)|doam+1(s)| < (16)
sz
< PZhM O(Unm(F>):0(Un,m(F))

q2p2hy

In the case p = 6 we can write

p1 P2 qi—lgr— 1

Ie=hyhu Y Y Z Z smnrl-j sinmoy, (17)

i=lk=1 j=1 I=1

as the first node greater than h, is the (p1hy + hy), which is, by definition, equal to
Tll (same argument applies to A,,), and the last node in the integral of p = 6 is the
p1g1hy, which is, by definition, equal to 'Cgl'fl (same argument applies to prgahay).
Note that the nodes p;q1hy and prgahy are included in the integrals over the intervals
[hn, p1qihn] and  [hy, p2gahy] . Keeping i,k fixed, we estimate the following sum:

q1—1g2—1 J ol

T, 0, . i .
J:=) Msmnr? sinmoy. (18)
4 J 1 !
j=11=1 T Oy

Using Abel summation formula, we get

q1=1¢92=1 TJ o! q1=1 smnfj q2=1 T. o!
J= Z Z Msmnf]smmc,ﬁ Z . Z o 71 3 s1nmcy,£_
=izl Top =% =r %
—1 2 j Ly 1
0 tsinnt! 27 9(7 o)) o(olt) 12 sinnt/ ¢(t/, 00" )qul B
- ] o I+1 1 k =
j=1 T,'J =1 O Oy =1 ol
@2 q—1 ‘L'-j o! ,L.] olt! ) q1— 1 TJ o 1 ]
_ Z P,i Z o( i k) . o ( k ) sinnT-j+Pq271 Z Msinnr-j =
- 7/ o! t/olt! Pk t/oi! '
=1 Jj=1 i Ok k . J=1 k
S i Kt A S G A S NG A S P
—_— k ) - — N 1 " 1 .
o TS| tol t/olt! /"ol ZARAR '

-1 1
T‘Il ) Tl_ql G]iJFI

-1 j+1 1
q2 ) (l)(’L’J c;1212 )

w2l o(t,0
_|_quz—1 Z [ i "k _

922 1 5l 1 ,olt!
+ZPI£[¢(1 7k)_¢(z k ) Qiqlfl_i_

1 1
(Téh qz )

Q] qu 1Q¢Il 1¢ =

4 J ~q2—1 J+1 __g2—1 q1— 1 qz 1
j=1 T; Oy T O R o
=J1+h+J3+J4. (19)

where P! = Z sinmoy,.

r=1
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We start with J;

. w20 o(t. o) ool e(t/oh) e o]
= i 1+1 j+1 i+1 1 itk
o= ol Gk+ /ol o/ olt
~24;-2 ' o/ -
= A12¢(Ti’,015)+A1¢( p2hy | Aag(T Gk)Pth+
- . /6! T GIGIH t/t/"' o}
=1 j=1 i Ok Ok k
jH Gl
1hn 2hM T; j
e J+ql)(1 I+1 %) QfF; = Ki + Ky + K3+ Ka, 20)
T/ 0,0,
where

A(t) o) = 0(/ 7 o) — 9z, o),
Ao (t) ! al) = o (¢, oﬁ“) ¢(7,~’+‘ al), | |
R0 (7,00 = Aitad (¢, 6) =95, ") 0 (e, 0" ) ~0 (", 0) +9(5]. ).

Us1ng inequalities Ti] > jpihn, 6} > Ipahwy, 0/| <2, |Pl] <2, we get

4 RS Ane(d o)) c
K| <———— Tk < Uy (F). Q1)
il prhypahy 1; J; Jl prhypahy nn(F)
Similarly, for K> we obtain
L e L U
= [(I+ 1) p2hmpihy J
4 2 1 Ao (T, ol C
- Z Al Dk ) < Upm(F).  (22)
p2hmpihn =1 l(l+1) j=1 J prhnp2hm

Absolutely same proof applies for K3. As for K4 we have
I o~ G|
l

— S ETey (23)
pihypahm =1 j=1 J(]+1)l(l+1)

| K4

This yields
G@—2q1— 2’¢( j+1 l+1)’ [Inm] [Inn] ‘¢(T_j+l 6}£+1)’
l

=1 j=1 -1 j=

[Inm] oo Tj+1’61+1 o oo T_jJrl olt!
g e >\+ F gl >r: s

I=1 j=[Inn]+1 I=[Inm]+1 j=1

Inn  Inm

= c|o(RB ) L 1Pl )| < CUsn(P)
where 1,1, — 0 when n,m — co. From (20)—(24) we get

p1p2hnhylJi| = O (Unu(F)). (25)
We proceed with the estimation of J5:
1| go— —1 ~1
00 R e o) (Lo L
ol < -1 ] I+1 1Bl <
T =0 O Ok
1| go— ~1 ~1
00 R e o) — (! Lol
< -1 1 |Pk‘+
T; =0 Oy




Nurbekyan A. R. Bohr’s Theorem for Double Trigonometric Interpolation Polynomials. 23

‘Q?lil‘ "2 gi—1 _I+1 1 1 !
+ ot 0 ———— | |B| <

T;]lil [go‘ ( i k )’ G]ﬁ G]i-H ‘ k’
_ c oo ol ot |
(g1 = Dpihypahy (= l

c | 1

+ ——|¢ : — = <

(Q1—1)P1hNH leo ,;) [G,f G,ﬁ“]

C

T i [OWan(9.10. 7))+ 0o

which together with g; — oo, p; — oo implies

p1pahvhy |2 = O(Uy i (F)). (26)
Estimation of J3 is done in the same way. For J; we have

—1 g1
g1 90 4
Ll = qu 1Q{]l 1 i k < ,
il =P ol (1 —1)(612—1)P1th2hM”¢HC((O’”2)
which together with g, g, — o when n,m — oo gives us
p1p2hnhu|Ja| = O(Unu(F)). (27)
Now, from (19) and @25)-(27) we get
p1p2hnhy|J| = O(Un(F)), (28)
which combined with (I3)—(I8)) completes the proof of Lemma . O

The next lemma was proved in [3]].
Lemma 3.3 [3]]. For any function (&), which satisfies the conditions (1)),
there exists a homeomorphism 7(¢) of the interval 7 such that for all F,
F(xy) = f(t(x),7(y)), feC(T?), o(5,f)<a(5)
the following conditions hold:
V(F) < oo, }lligg)vh(F):O. (29)
It is easy to see that Lemmas 3.1 and 3.2 imply Theorem 1.6, while from
Lemmas 3.1, 3.2 and 3.3 follows Theorem 1.7, since implies
lim U, ,(F)=0.

n,m—sco
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