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Introduction. In this paper we consider the following problem.

Let X be a real reflexive Banach space endowed with partial order <,
which is a vector lattice under this order, V"< X is a closed subspace and
sublattice, let 4 be a mapping from X to V'-— the dual space of V', LeV’,

o, € X . Our aim is to find ueKV‘f such that
(Au—L,v—u>20 VveKk,,
where
Kfz{ueV: y<v<o|

and <,> is usual pairing between ¥ and V' .

The main result of this paper is the following statement (see Theorem 3).

If the operator A is coercive, strictly T-monotone and hemi-continuous
acting from X to V' (for the definitions we refer the reader to section 4), then the
following two side estimates hold:

LAAp<Au<Lv Ay in V",

where u is the unique solution of the above problem. Here V" is the order dual of
V' (for the definitions see the sections 3 and 4).

For this kind of estimates for one obstacle problem see [1, 2].

Preliminary background. Let £ be a linear topological space and C be a
nonempty closed and convex subset of £ .

Definition 1. A function g:CxC — R is called monotone, if g(v,v)<0 for

every ve C and
gv,w)+g(w,v)>20 Vv,weC. (1)
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g is called strictly monotone, if it is monotone and strict inequality holds in (1), if

VEW.
Note that for a monotone function g we have g(v,v)=0 for every veC.

Definition 2. A function f:E — R is called lower (upper) semi-continuous
at tyeE, if
£ (t,) <liminf f(¢) [f(to) > limsupf(t)j .
11 1t
Definition 3. A function g:CxC — R is called hemi-continuous, if
i gW,v)<0 forevery veC;
ii. for every v,weC the function g,  :[0,]]>R defined by

g, (1)=g(v+1(w—v),w) is lower semi-continuous at /=0,

Remark 1. We recall that a map 4:C — E’, where C is a convex subset of
E , is said to be hemi-continuous, if it is continuous from the line segment of C to
the weak topology of E'. Clearly, if A is hemi-continuous from C to E’, then the

function g, given by g(v,w)= <Av,v - w) Vv,we C, is hemi-continuous.

The next theorem is a classical result about the existence and uniqueness of
one obstacle problem for monotone and hemi-continuous mappings. For the proof
of this theorem we refer to [2].

Theorem 1. Let E be a Hausdorff topological space, C be a closed
convex subset of £, w:E— R be convex and lower semi-continuous and let

g:CxC—> R be a monotone, hemi-continuous mapping such that g(v,-) is
convex and upper semi-continuous for each v e C . Let us assume also that there is
a compact subset B of £ and w, € BN C, such that
v(v)+g(v,w,)>w(w,) forall veC\B.
Then the set of all solutions v of the problem
veC,
{ 2)

v(v)+glv,w) <y (w), YweC

is a non-empty convex compact subset of BN C. Moreover, if g is strictly

monotone, then the problem (2) has unique solution.

Ordered Banach spaces. Let X be a real Banach space, and < be a partial
order relation in X induced by a closed positive cone

P={veX:v20}. 3)

We assume that X is a vector /attice with this ordering. That is, any two
vectors u and v of X have a common least upper bound, denoted by #v v, and a
common greatest lower bound denoted by u Av. Then every vector ve X can be
decomposed as

v=v"—-v, 4
where vi =vv0 and v  =—vA0 are the positive and negative parts of v,

respectively. In other words, the positive cone (3) is generating, i.e. P—P=X.
The decomposition (4) and its generalization
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VHEW=VVWH+VAW, V,welX, ®))
are obtained from the identity
vww+z=(w+z)v(w+z), v,wzelX. (6)

In particular, (5) follows from (6) if we take z=-v-w (note that
(—w)v (=v) =—(wAv)=—(v Aw)). From (6) we also obtain the identities
vww=v+(w—v) =w+(v-w)", @)
vaw=v—(v-w) =w—(w-v)", @)
that will be often used below.

Recall that a lattice X 1is said to be complete, if every subset Z — X with an
upper bound possesses a least upper bound, denoted by vZ. If V' is a subspace of
X , we say that V' is a sublattice of X, if for any two vectors v and w of V', the
elements vAw and vv w, formed in X also belongto V.

For such ¥ we denote the order dual of ¥ by V", which is the (closed)
subspace of the dual space V', generated by positive cone

P'={v'eV’:<v’,v>20VveP}, 9)
the pairing appearing in (9) being the duality pairing of ¥ and V' . In other words,
V' =pP'-P.

The order dual V" will not, in general, coincide with the whole dual space
V' (see the example below).

V" is a vector lattice under the dual ordering, that is, the partial ordering
induced by the (closed) positive cone (9). In particular, for arbitrary v' and w' in

V" we can define v' Aw' and v'v W', both elements of V", and we have as above
the identities

Vv =v+ W =) =w + (0 =w)",
VAW =V -0 =) =w'-w'-V)".

Example. In applications to variational and quasi-variational inequalities for
linear second order (elliptic) PDE in divergence form, the space X usually will be
the Sobolev space H'(£2), where £ is a smooth bounded open subset of R", and
V' will be either the Sobolev space Hé(.()), or any closed subspace of H'(£2)
such that

Hy(2)cV c H'(9Q). (10)

Under the following order,
usveu(x)<v(x) ae xel2, (11)
the space X = H'(£2) is a vector lattice, and the positive cone (3) is closed (see

[3]). Note that H'(£2) can be identified with a sublattice of L*(£2), which is

complete lattice with respect to (11) (see [4]). The subspace V' satisfying (10) is
usually defined in terms of the boundary conditions for the problem at hand.

Moreover, one should not forget that ¥ was a sublattice of X =H'(£).
Particularly, the subspace H,(£2) satisfies the Dirichlet’s boundary conditions.
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If V'=Hy(£2), then V'=H (). In this case v' eV’ is a positive element
for the dual ordering, if and only if V' is a positive distribution. Hence V' is a
positive (Radon) measure in (2, belonging to H ' (¢2). The order dual of Hé Q)

is thus the closed subspace of all distributions in H'(£2), which may be

represented as the difference of two positive measures in (2.

T-monotone operators. Let X be a real reflexive Banach space, which is a
vector lattice for the partial ordering induced by a closed positive cone (3), and let
X' be the dual space of X .

Definition 4. We say that the operator 4: X — X' is

a) monotone, if

(Au—Av,u—v>20 forall u,ve X, (12)

b) strictly monotone, if it is monotone and strict inequality holds in (12)
when u #v,

¢) hemi-continuous, if the map ¢ — <A(u +tv), w> is continuous on [0,1] for
all u,v,we X,

d) coercive, if there exists a w, € X such that

(Au,u - w0>
m-———+-=+40, ueclX.
W

Assume that we are given a closed subspace V' of X, which is a sublattice
in X . We consider the map 4: X — V' from the space X to the dual V' of V.

Definition 5. We will say that 4 is T-monotone, if

<Au—Av,(u—v)+>ZO (13)
for every u,ve X such that (u—v)" €V . A4 is said to be strictly T-monotone, if it

is T-monotone and if (u—v)" =0 whenever the equality holds in (13).

The pairing in (13), as all pairings below, is the duality pairing between V
and its dual space V' .

Lemma 1. If the operator 4: X — V' is T-monotone (strictly T-monotone),
then its restriction to ¥ is a monotone (strictly monotone) operator from ¥ to V.

For the proof of this Lemma we refer to [2].

Example. Let £ be a bounded subset in R" and
a(u,v)= jﬂ( D a;(Xu v + Db (u, v+c(x)uv)dx (14)
ij=l | !
with A
such as

b;,ce L*(£), c¢(x)=20 a.e.in €2, and suppose there is a constant y, >0

n

Y a;(0)EE 2y, |EF ae xeVEER".

i,j=1
Let V' be any closed subspace of the Sobolev space H'(£2), satisfying (10),
such that for some >0

a(v,v)> 7/||v||i[1 @ Yvel. (15)
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If V' =Hy(Q), (15) follows from the above assumptions on the coefficients

of the form. If ¥V = H'(£2), then (15) still holds provided
c(x)=¢c, >0 ae xe2.
The identity
<Au,v> =a(u,v), ueH (Q),veV

defines a (linear) strictly T-monotone operator from X = H'(£2) to V.
It is a consequence of the following property of the form (14):
a(w',w)=0 for every we H'(Q). (16)
In fact we have
<Au — Av,(u —v)+> =a(u—-v,u—-v)")

therefore, due to (16) and (15),

a(u=v,(u=)") =a((u=v)", @ =) = y|@-v)’
whenever (u—v)" €V . The latter assumption is provided, for example, in case

VzHé(Q), if u,ve H'(2), u—v<0 a.e. on the boundary /" of Q.

Note that under the above assumptions, the restriction of 4 to V' is, by (15),
a coercive continuous linear operator from 7 to V'.

For more examples of T-monotone operators we refer to [5].

Two side estimates.

Theorem 2. Let X be a real reflexive Banach space, C be a convex,
closed subset of X, 4 be a coercive, monotone and hemi-continuous mapping
from C to the dual X' of X . Then for every functional L e X' the set of all v

satisfying
veC (17)
<Av,v—W>S<L,v—W> YweC

is a non-empty bounded, closed, convex subset of C . Moreover, if A is strictly

monotone then the above problem has unique solution.
Proof. Apply Theorem 1 with £ =X with the weak topology, v =—L (X

2
14

is reflexive) and g(v,w) =<Av,v—w> , vwweC. Since A is monotone and hemi-
continuous, so g is also monotone and hemi-continuous (see Remark 1). Since A4
is coercive too, then g satisfies to the following condition: there is a compact
subset B of E=X anda w, € BNC, such that
v(v)+g(v,w,)>w(w,) forall ve C\B.
We can obtain this by taking w, as the vector appearing in definition 4.d)
and B= {v eX ||v|| < R} with R > 0 sufficiently large.

If A4 is strictly monotone, so is g, hence the problem (17) has unique

solution.
Remark 2. For a real ordered Banach space V' and for elements @,y €V,

we define the set
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Ky ={ueV:y<u<gpl
It is easy to see that K is a closed convex subset of V. We consider the
following problem: find u Ku‘f such that
(Au—L,v—u)ZO, VveKy"/’.

If 4 and L are as in the previous Theorem then this problem has unique
solution.

Remark 3. For L,L, eV' wesay L, >L,,if L, —L,eP".

Theorem 3 (Two side estimates). Let X be a real reflexive ordered
Banach space, V' — closed subspace of X, which is a sublattice of X, 4 be a
coercive, strictly T-monotone and hemi-continuous mapping from X to V'. Let
two elements @,y € X , v <@ be given, and let L €V . Suppose that

A eV’ suchthat A>L and A> Ay in V', (18)
A1 eV’ suchthat A<L and A< Ap in V', (19)
and
(w-v) eV VveV, (20)
(v-@) eV VveV. 21
Then if u is the solution of
uek?: (Au—Lyv-u)>0 Vvek/, (22)
where
Kf={ueV :y<u<qj, (23)
then one has the following two side estimate
A<Au<A in V' (24)

In particular, if L, Ap, Ay belong to the order dual V" of V', one has also
Au e V" and (24) becomes
LAAp<Au<Lv Ay in V", (25)
Proof. This last assertion holds, since, if L, Ap, Ay V", one can take
A=LAAp=L—(L—-Ap)" (see (8)) and A=Lv Ay =L+ (Ay —L)" (see (7)) in
(24).

To prove the upper bound of (24) we recall the Theorem 2 and consider the
unique solution z € V' of auxiliary variational inequality

z<u: <AZ—A,W—Z>ZO YwelV,w<u. (26)
It is enough to prove that z=u, since then taking w=u—v in (26) for an
arbitrary v>0, we obtain
Au—A=Az—A<0 in V',
To prove that z=u, let us first prove that z>y . Due to (20) and taking
w=z+(y—-z) =y vz<u in (26), we get

<A—Az,(1//—z)+>S0.
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Hence, since 4> Ay, one gets
(4y - A -2 )+ (A= 4z, -2)) <0,
which by the strict T-monotonicity of 4 implies that (7 —z)" =0. This means that
zZ2y .
Let us now prove that z>u. Since u solves (22) and in (26) z<u, then
z<¢@. In other words zeKy‘f. Take w=zvu=z+@wu—-z)"<u in (26) and

v=uAz=u—(u—z)" 2w in (22). Summing the obtained inequalities and using
A> L from (18), we have
<Au—Az,(u —z)+>s<L—A,(u—z)*>s0,

and, since A is strictly T-monotone, it follows that (u—z)" =0 and so z>u.

So, the unique solution u of (22) is also the unique solution of (26). We
already know, that this implies the upper bound in (24).

For obtaining the lower bound in (24), we recall again the Theorem 2 and
consider the unique solution z €V of auxiliary variational inequality

z>u: <Az—/1,w—z>20 YwelV, w>u. 27
The steps are similar as above. It is enough to prove that z =u, since taking
w=u+v in (27) for an arbitrary v>0, it will follow that
A—Au=A-Az<0 in V"
To prove that z=u, let us first prove that z<¢. Due to (21) and taking

w=z—(z-¢@) =zA@>u in (27), we get
<Az ~A(z —(p)+> <0.
Hence, since 4 < Ap, one gets
(2= Ap,(z=p) )+ (4z- A, (z-)") <0,

which, due to the strict T-monotonicity of A, implies that (z—¢)" =0. This means
that z<¢.

Let us now prove that z<u. Since u is the solution for (22) and in
27) z>u, one gets that z>w. In other words, =ze Kv‘f . Take
w=zAu=z—(z-u)"2u in (27) and v=uvz=u+(z-u) <¢ in (22).
Substracting the obtained inequalities and using A < L from (19), we have

<Az—Au,(z—u)+>S</1—L,(z—u)+>SO,

and, since A is strictly T-monotone, it follows that (z—u)" =0 andso z<u.

So, we have proved that the unique solution uof (22) is also the unique
solution of (26) (we have already known that this implies the upper bound in (24))
and the unique solution of (27), which, as we see, implies the lower bound in (24).
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[r. [}. FhpUmipuqut

Bplnt ungpunnuiny juinph (musdwt pynndwih quuwhwwnwljwbttp

Usluwwnwiipnid pubwpynud E Eplne jungpiinnuiny jutighpp' pughwingp
nnudpny: Npnowljh wuwydwbibph weijuwniput ghypnid wywugmgynid Eu
Enyynnuwith quuhwnwljuubp wn pugph pusdwt hwdwp:

P.P. Teiimypa3siH.

JIByCTOpOHHHE OLEHKH IJs 32[a4Yd € JABYMS NPensiTCTBHIMH

B pabore paccmarpuBaercst 3amada ¢ IBYMsI HPENATCTBUSAMH B aOCTpakTHOH
MOCTaHOBKE. JIOKa3bIBAIOTCSI IBYCTOPOHHHE OLEHKH JUI PEIICHHWs 3TOM 3ajadd Ipu
HEKOTOPBIX MPETIOI0KECHUIX.



