Physical and Mathematical Sciences

2009, № 1, p. 20–23

Mathematics

ON DISTRIBUTION'S CONSTANT SLOWLY VARYING COMPONENT

G. P. AVAGYAN*

Chair of the Theory of Probability and Mathematical Statistics, YSU

In the present report it is proved that for a priori given numbers $\rho \in (1,+\infty)$ and $L \in R^+ = (0,+\infty)$ there is a distribution $\{p_n\}_1^\infty$ with the following properties: $\{p_n\}_1^\infty$ varies regularly as $n \to +\infty$ with exponent $(-\rho)$, exhibits the constant slowly varying component L, and $\{\log p_n\}_1^\infty$ is downward convex.

Keywords: distribution, regular variation, constant slowly varying component.

10. Let $\{p_n\}_1^{\infty}$ be a regularly varying as $n \to +\infty$ distribution with exponent $(-\rho)$, $1 \le \rho < +\infty$, i.e. for s = 2,3,... the limit exists $\lim_{n \to +\infty} (p_{s \cdot n} / p_n) = s^{-\rho}$ (see [1]).

There is a slowly varying sequence $\{L(n)\}_1^{\infty}$, i.e. L(n) > 0, n = 1, 2, ..., and for s = 2, 3, ... the limit exists $\lim_{n \to +\infty} (L(s \cdot n) / L(n)) = 1$ such that

$$p_n \approx n^{-\rho} L(n), \ n \to +\infty$$
 (1) (we write $f_n \approx g_n, \ n \to +\infty$ for $\{f_n\}$ and $\{g_n\}$, if $\lim_{n \to +\infty} (f_n / g_n) = 1$).

If for L(n) in (1) the limit $\lim_{n \to +\infty} L(n) = L \in \mathbb{R}^+ = (0, +\infty)$ exists, then we say that $\{p_n\}_1^{\infty}$ exhibits a constant slowly varying component (CSVC).

In Bioinformatics there is a restriction on distribution of type (1): the graph of $\{\log p_n\}_1^{\infty}$ consists of at most three upward/downward convex pieces (see [2]).

In the present report we establish the following

Theorem. Given the constants $\rho \in (1,+\infty)$ and $L \in \mathbb{R}^+$. There is a distribution $\{p_n\}_1^{\infty}$, which:

- a) varies regularly as $n \to +\infty$ with exponent $(-\rho)$;
- b) exhibits CSVC L;
- c) generates the sequence $\{\log p_n\}_1^{\infty}$ with graph consisting of one downward convex piece.

-

^{*} E-mail: gor avakyan@yahoo.com

The proof is based on special distribution of the type

$$p_n = c(\rho)n^{-\rho}, \ n = 1, 2, ..., \ c(\rho) = (\sum_{n>1}^{3} n^{-\rho})^{-1},$$
 (2)

where $(-\rho)$ presents the exponent of regular variation and $c(\rho)$ is it's CSVC.

For distribution of type (2) the sequence $\{\log p_n\}_1^\infty$ satisfies statement c) of the Theorem. Indeed, we have to verify the inequality $\log p_n - \log p_{n+1} < \log p_{n+1} - \log p_{n+2}$ for index $n \ge 1$. The latter inequality is equivalent to $(p_n/p_{n+1}) > (p_{n+1}/p_{n+2})$ or due to (2), to $((n+1)/n)^\rho > ((n+2)/(n+1))^\rho$ that leads to 1 + (1/n) > 1 + (1/(n+1)).

Hence if the equality $L = c(\rho)$ holds for given ρ and L, the distribution $\{p_n\}_1^{\infty}$ satisfying the Theorem is constructed.

Thus, there remains the case $L \neq c(\rho)$, where $c(\rho)$ is given by formula (2).

2°. Consider the continuous analogue of the sequence $q_n = Ln^{-\rho}$, n = 1, 2, ...:

$$f(t) = Lt^{-\rho}, \ t \in [1, +\infty). \tag{3}$$

Let us draw the tangent line to the curve y = f(t) at the entire point $n_0 > 1$. Choice of this point will be done later. Since $f'(t) = -\rho L t^{-\rho-1}$, $t \in [1, +\infty)$, and for the tangent line y(t) = at + b to the curve y = f(t) at point $t = n_0$ we have $y(n_0) = f(n_0)$, $a = f'(n_0)$, therefore $b = L n_0^{-\rho} (1 + \rho)$ and

$$y(t) = L n_0^{-\rho} \left\{ -\frac{\rho t}{n_0} + (1+\rho) \right\}. \tag{4}$$

The finite sum

$$\sum_{k=1}^{n_0} y(k) = L n_0^{-\rho} \sum_{k=1}^{n_0} \left\{ -\frac{\rho k}{n_0} + (1+\rho) \right\} = L \frac{1}{n_0^{\rho-1}} \left\{ \frac{\rho}{2} + 1 - \frac{\rho}{2n_0} \right\}$$
 (5)

is evaluated easily with the help of (4). Ther

$$\sum_{k=1}^{n_0} y(k) + \sum_{n > n_0} q_n = L \frac{1}{n_0^{\rho - 1}} \left\{ \frac{\rho}{2} + 1 - \frac{\rho}{2n_0} \right\} + L \sum_{n > n_0} n^{-\rho} \stackrel{def}{=} T_{n_0} . \tag{6}$$

Since $\rho \in (1, +\infty)$, then for n_0 large enough we may get the inequality

$$T_{n_0} < 1. (7)$$

Let $\{e_n\}_1^{n_0}$ be a decreasing sequence of non-negative numbers with $e_k > 0$, $k = 1, 2, ..., n_0 - 1$, $e_{n_0} = 0$, for which $\{\log e_n\}_1^{n_0}$ is downward convex and

$$\sum_{k=1}^{n_0} e_k = 1 - T_{n_0} \,. \tag{8}$$

Here T_{n_0} is given by equality (6). Let us give an example of such a sequence.

Example. Put
$$e_n = M\left(\frac{1}{n} + \frac{1}{n_0}\right)$$
, $n = 1, 2, ..., n_0$, where M is a positive

constant. $\{e_n\}_1^{n_0}$ decreases and $e_{n_0}=0$. The downward convexity of $\{\log e_n\}_1^{n_0}$ is

proved similarly to the case (2). The constant M is defined uniquely from the condition

$$M\sum_{k=1}^{n_0-1} \left(\frac{1}{n} + \frac{1}{n_0}\right) = 1 - T_{n_0}.$$

For $L \neq c(\rho)$ the distribution $\{p_n\}_1^{\infty}$, satisfying Theorem, is built as follows:

$$p_{k} = \begin{cases} y(k) + e_{k} & \text{for } k = 1, 2, ..., n_{0}, \\ q_{k} & \text{for } k > n_{0}. \end{cases}$$
 (9)

It is clear that $\{p_n\}_1^{\infty}$, defined by equalities (9), is a distribution, because by

(6)–(8) we have
$$\sum_{k\geq 1} p_k = \sum_{k=1}^{n_0} (y(k) + e_k) + \sum_{n>n_0} q_n = 1$$
.

The distribution $\{p_k\}_1^{\infty}$ of type (9) varies regularly as $n \to +\infty$ with exponent $(-\rho)$ and exhibits CSVC because $p_n \approx q_n = Ln^{-\rho}$, $n \to +\infty$. Here we used (9).

Finally, the sequence $\{y(k) + e_k\}_{k=1}^{n_0}$ being generated by the sequence $\{\log(y(k) + e_k)\}_{k=1}^{n_0}$ becomes downward convex for n_0 large enough. Note that n_0 is the point, to which the tangent line was drawn.

Indeed, according to (4), for n_0 large enough the number c, where 0 < c = y(k) - y(k+1), $k = 1, 2, ..., n_0 - 1$ (y(t) is linear), may be made arbitrary small

That is why we may choose n_0 in order to get inequalities

$$2ce_k + e_{k+2} > 2ce_{k+1}, \ k = 1, 2, ..., n_0 - 1.$$
 (10)

Let us take n_0 so large that the inequalities (7) and (10) take place and fix n_0 . Let us prove the validity of inequalities

$$y(k)e_{k+2} + y(k+2)e_k > 2y(k+1)e_{k+1}, k = 1, 2, ..., n_0 - 1,$$
 (11)

using (10). Since y(k+1) = y(k) + c, y(k+2) = y(k) + 2c, then (11) may be written in the form

$$y(k)(\mathring{a}_{\hat{e}+2} + \mathring{a}_k - 2e_{k+1}) + 2c(e_k - e_{k+1}) > 0, \ k = 1, 2, ..., n_0 - 1.$$
 (12)

Since the sequence $\{\log e_k\}_1^{n_0}$ is downward convex, then due to [3] $\{e_k\}_1^{n_0}$ is downward convex. That is why the first term at the left-hand-side of (12) is positive. Now (12) follows from the decrease of sequence $\{e_k\}_1^{n_0}$. Thus (11) is proved.

The log-downward convexity of sequences $\{y(k)\}_{1}^{n_0}$ and $\{e_k\}_{1}^{n_0}$ means that the there hold the following inequalities

$$y(k)y(k+2) > (y(k+1))^2$$
, $e_k e_{k+2} > e_{k+1}^2$, $k = 1, 2, ..., n_0 - 1$.

Summing up these inequalities with (11), we obtain for $k = 1, 2, ..., n_0 - 1$

$$y(k)y(k+2) + y(k)e_{k+2} + y(k+2)e_k + e_k e_{k+2} > (y(k+1))^2 + 2y(k+1)e_{k+1} + e_{k+1}^2$$
.
Last inequalities are easily transformed into

$$\frac{y(k) + e_k}{y(k+1) + e_{k+1}} > \frac{y(k+1) + e_{k+1}}{y(k+2) + e_{k+2}}, \ k = 1, 2, ..., n_0 - 1,$$

which prove the statement for these indices.

Returning to (9), we become certain that $\{\log p_k\}_1^{\infty}$ is downward convex, because for indices $n_0, n_0 + 1,...$ the statement is obvious.

Theorem is proved.

Remark. It is easy to see that the constructed distribution $\{p_n\}$ of type (9) is downward convex (see [3]).

Received 24.11.2008

REFERENCES

- 1. Seneta E. Regularly varying functions. M.: Nauka, 1985 (in Russian).
- 2. **Arakelyan A.G.** Stability of frequency distributions in biomolecular models. Yerevan: Ph.D. Thesis. Yerevan State University, 2007 (in Russian).
- 3. Yakovlev S. Doklady NAN RA, 2008, № 6.

Գ. Պ. Ավագյան

Հաստատուն դանդաղ փոփոխվող բաղադրիչով բաշխման մասին

Աշխատանքում ապացուցված է, որ նախապես տրված $\rho \in (1,+\infty)$ և $L \in R^+ = (0,+\infty)$ թվերի համար գոյություն ունի հետևյալ հատկություններով օժտված $\{p_n\}_1^\infty$ բաշխում։ Այն կանոնավոր է փոփոխվում $(-\rho)$ ցուցիչով, երբ $n \to +\infty$, ունի L հաստատուն դանդաղ փոփոխվող բաղադրիչ, և $\{\log p_n\}_1^\infty$ -ը ուռուցիկ է դեպի ներքև։

Г. П. Авагян.

О постоянной медленно меняющейся компоненте распределения

В сообщении доказано, что для априори заданных чисел $\rho \in (1,+\infty)$ и $L \in R^+ = (0,+\infty)$ существует распределение $\{p_n\}_1^\infty$ со следующими свойствами: $\{p_n\}_1^\infty$ правильно меняется при $n \to +\infty$ с показателем $(-\rho)$, допускает постоянную правильно меняющуюся компоненту L и последовательность $\{\log p_n\}_1^\infty$ выпукла вниз.