Physical and Mathematical Sciences

2009, № 2, p. 16–20

Mathematics

INITIAL BOUNDARY VALUE PROBLEM FOR SOME CLASS OF NON-LINEAR DEGENERATE PSEUDOPARABOLIC EQUATIONS

G. S. HAKOBYAN^{1*}, R. LOTFIKAR^{2**}

The present paper studies existence and uniqueness of solution of initial boundary value problems for the non-linear degenerate pseudoparabolic equations. It is proved that if operators L and M satisfy certain conditions, the problem has a unique solution in corresponding functional spaces.

Keywords: non-linear operator, pseudoparabolic, monotone operator.

1°. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain in a half-space $x_n > 0$ with sufficient smooth boundary $\Gamma = \Gamma_1 \cup \Gamma_0$, where Γ_0 is a domain in hyperspace $x_n = 0$.

The following initial boundary value problem is considered:

$$\frac{\partial}{\partial t} L(u(t,x)) + M(u(t,x)) = 0, \qquad (1)$$

$$x = (x_1, \dots, x_n) \in \Omega, \quad t > 0,$$

$$u\big|_{t=0} = u_0(x), \tag{2}$$

$$u\big|_{\Gamma_1} = 0 , (3)$$

where operators L and M are defined as

$$L(u) = -\sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_i} \left(b_{ij}(x) \frac{\partial u}{\partial x_j} \right) - \frac{\partial}{\partial x_n} \left(b_{nn}(x) \frac{\partial u}{\partial x_n} \right),$$

$$b_{ij}(x) = b_{ji}(x), \quad i, j = 1, 2, ..., n-1,$$

$$M(u) = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(a_i(x, \nabla u) \right).$$

Assume that functions $b_{ij}(x)$, i, j = 1, 2, ..., n-1, $b_{nn}(x)$, $a_i(x, \vec{\xi})$ are continuous for any $x \in \overline{\Omega}$, $\forall \xi \in \mathbb{R}^n$, whereas:

E-mail: rlotfikar@yahoo.com

¹ Chair of Optimal Control and Approximation Methods, YSU

² Azad University of Ilam, Iran Islamic Republic

E-mail: gurgen@ysu.am

a) $|b_{nn}(x)| \le x_n^{\alpha}$, $1 < \alpha < 2$, and the quadratic form

$$L(x,\xi) = \sum_{i,j=1}^{n-1} b_{ij}(x)\xi_i\xi_j + b_{nn}(x)\xi_n^2$$

is positively defined for all $x \in \Omega$, and for all $x \in \Gamma_0$ its rank is equal to (n-1);

b)
$$\sum_{i=1}^{n} a_i(x,\xi) \eta_i \le c \left[\sum_{i,j=1}^{n-1} b_{ij}(x) \xi_i \eta_j + b_{nn}(x) \xi_n \eta_n \right];$$

c)
$$\sum_{i=1}^{n} a_i(x,\xi) \xi_i \xi_j \ge c_1 \left(\sum_{i,j=1}^{n-1} b_{ij}(x) \xi_i \xi_j + b_{nn}(x) \xi_n^2 \right).$$

For the case $L = \Delta$, $M = \frac{\partial^2}{\partial x^2}$ and $\Gamma_1 = \Gamma$ the problem (1)–(3) has been originally

investigated by S.L. Sobolev [1], and afterwards similar problems for the case of linear operators have been investigated in works of R.A. Alexandryan, G.V. Virabyan, T.I. Zelenyak and many other armenian and foreign mathematicians [2]. In those works the operator L in equation (1) was considered to be strict elliptic, and M – linear.

In the case of non-linear operators, when $\Gamma_1 = \Gamma$ (no degeneracy), the problem (1)–(3) was considered in [3–6]. For operators L, which may be degenerate on the entire boundary, or on a part of it, the problem (1)–(3) was investigated by G.S. Hakobyan [7].

The present paper considers the case of initial boundary value problems (1) for elliptic degenerate L and non-linear M operators.

 2° . Let K_L be a set of functions, which satisfy the following conditions:

1)
$$u(x)$$
, $\frac{\partial u}{\partial x_i}$, $\frac{\partial^2 u}{\partial x_i \partial x_j}$ $(i, j < n)$, $x_n^{\alpha} \frac{\partial u}{\partial x_n}$ and $\frac{\partial}{\partial x_n} \left(x_n^{\alpha} \frac{\partial u}{\partial x_n} \right)$ are continuous

functions in Ω ,

2) u(x) vanishes in some neighborhood of Γ_1 .

In this case the following theorem is true.

Theorem 1 (see [7, 8]). Operator L, defined as a mapping from K_L into space $L_2(\Omega)$, is symmetric and positively defined.

Proof. Let u(x) and $v(x) \in K_L$. Then

$$\begin{split} \left(L(u),v\right) &= -\int_{\Omega} \left(\sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_i} \left(b_{ij}(x) \frac{\partial u}{\partial x_j}\right) + \frac{\partial}{\partial x_n} \left(b_{nn}(x) \frac{\partial u}{\partial x_n}\right)\right) v(x) dx = \\ &= -\int_{\Gamma} \left(\sum_{i,j=1}^{n-1} b_{ij}(x) \cos \widehat{vx_i} \cos \widehat{vx_j} + b_{nn}(x) \cos^2 \widehat{vx}\right) \frac{\partial u}{\partial v} v ds + \\ &+ \int_{\Omega} \left[\sum_{i,j=1}^{n-1} b_{ij}(x) \frac{\partial u}{\partial x_j} \cdot \frac{\partial v}{\partial x_i} + b_{nn}(x) \frac{\partial u}{\partial x_n} \cdot \frac{\partial v}{\partial x_n}\right] dx = \\ &= -\int_{\Gamma_0} b_{nn}(x) \frac{\partial u}{\partial x_n} \cdot v ds + \int_{\Omega} \left[\sum_{i,j=1}^{n-1} b_{ij}(x) \frac{\partial u}{\partial x_j} \cdot \frac{\partial v}{\partial x_i} + b_{nn}(x) \frac{\partial u}{\partial x_n} \cdot \frac{\partial v}{\partial x_n}\right] dx \;. \end{split}$$

We are going to prove that $\int_{\Gamma_0} b_{nn}(x) \frac{\partial u}{\partial x_n} v ds = 0$. To prove this, it's enough

to show that

$$\lim_{x_n \to 0} x_n^{\alpha} \frac{\partial u}{\partial x_n} = w(x_1, \dots, x_n),$$

and the equality $w(\hat{x}) = w(x_1, ..., x_n) = 0$ takes place.

The existence of limit above explicitly follows from the definition of set K_L . Assume there exists an element \hat{x}_0 , for which $w(\hat{x}_0) > 0$. Then, for enough small $x_n > 0$ we get

$$\frac{\partial u(\hat{x}_0, x_n)}{\partial x_n} > \frac{w(\hat{x}_0)}{2x_n^{\alpha}}.$$

Hence, the integral $\int_{0}^{x_n} \frac{\partial u(\hat{x}_0, x_n)}{\partial x_n} dx_n$ diverges, and we get a contradiction to condition $u(x) \in K_L$.

Thus we proved that (L(u),v)=(u,L(v)). Since $L(x,\xi)$ is positive, the operator L is also positive. It is not hard to prove that operator L is positively defined (see [8]).

Let's denote by the same L the Friedrichs extension of operator L, which will be self-adjoint.

 3° . Let's define a new scalar product on linear manifold K_L by the formula

$$[u,v] = (L(u),v), \tag{4}$$

and let's denote by H_L the closure of manifold K_L by the new norm (derived from the scalar product (4)). So, the functions of H_L have first generalized derivatives by S. L. Sobolev and vanish on boundary Γ_1 .

It is known (see [8]) that operator L is invertible and it's inverse operator maps $L_2(\Omega) \to H_L$, hence $\forall u \in K_L$, $L^{-1}Mu \in H_L$.

Thus, we can define an operator A over the domain K_L by the formula

$$A: u \to L^{-1}Mu$$
.

Now, consider the auxiliary Cauchy problem

$$\begin{cases} \frac{\partial u}{\partial t} = -Au, \\ u\big|_{t=0} = u_0. \end{cases}$$
 (*)

Lemma 1. The operator $A: H_L: H_L^*$ is bounded.

Proof. Let $u \in K_L$, $v \in K_L$. Then, from definitions of operator A and new scalar product (4) we have

$$\langle Au, v \rangle = \int_{\Omega} Mu \cdot v \, dx = -\sum_{i=1}^{n} \int_{\Omega} \frac{\partial}{\partial x_{i}} a_{i}(x, \nabla u) \, v \, dx =$$

$$= \sum_{i=1}^{n} \int_{\Omega} a_{i}(x, \nabla u) \frac{\partial v}{\partial x_{i}} dx = -\sum_{i=1}^{n} \int_{\Gamma_{0}} a_{i}(x, \nabla u) v ds.$$

We can show (similarly as in Theorem 1) that $\sum_{i=1}^{n} \int_{\Gamma_0} a_i(x, \nabla u) v ds = 0$, hence

$$\langle Au, v \rangle = \sum_{i=1}^{n} \int_{O} a_{i}(x, \nabla u) \frac{\partial v}{\partial x_{i}} dx$$

From the condition (b) it follows that

$$\langle Au, v \rangle \leq c \sum_{i,j=1}^{n-1} \int_{\Omega} \left(b_{ij}(x) \frac{\partial u}{\partial x_{j}} \cdot \frac{\partial v}{\partial x_{i}} + b_{nn}(x) \frac{\partial u}{\partial x_{n}} \cdot \frac{\partial v}{\partial x_{n}} \right) dx = c (Lu, v) = c [u, v] \leq c ||u||_{H_{L}} ||v||_{H_{L}},$$
 therefore $||Au||_{H_{L}^{*}} \leq c ||u||_{H_{L}}.$

Let X be a reflexive Banach space and X^* is its dual space.

Definition I. The operator $A:D_A\to X^*$ with the everywhere dense definition domain $D_A\subset X$ is called

1) monotone, if

$$\langle Au - Av, u - v \rangle \ge 0 \quad \forall u, v \in D_A;$$

2) strictly monotone, if there exists such $c_0 > 0$, so that

$$\langle Au - Av, u - v \rangle \ge c_0 \|u - v\|^2 \quad \forall u, v \in D_A;$$

3) hemicontinuous, if for each $u, v, w \in D_A$ the mapping $\lambda \to \langle A(u + \lambda v), v \rangle$ is continuous function from R into R.

It's well known that any strictly monotone operator is coercitive (see [5]), i.e.

$$\exists \alpha > 0, \ \langle Au, u \rangle \ge \alpha \|u\|^2.$$

Lemma 2. The operator A is hemicontinuous and strictly monotone.

Proof. Suppose $u, v \in K_L$. Then

$$\langle Au - Av, u - v \rangle = -\sum_{i=1}^{n} \int_{\Omega} \left[\frac{\partial}{\partial x_{i}} (a_{i}(x, \nabla u)) - \frac{\partial}{\partial x_{i}} (a_{i}(x, \nabla v)) \right] (u - v) dx =$$

$$= \sum_{i=1}^{n} \int_{\Omega} (a_{i}(x, \nabla u) - a_{i}(x, \nabla v)) \frac{\partial (u - v)}{\partial x_{i}} dx.$$

From the equation

$$a_{i}(x,\xi) - a_{i}(x,\eta) = \int_{0}^{1} \frac{d}{dt} a_{i}(x,\eta + t(\xi - \eta)) dt = \int_{0}^{1} \int_{j=1}^{n} \frac{da_{i}(x,\eta + t(\xi - \eta))}{d\xi_{i}} (\xi_{j} - \eta_{j}) dt$$

it follows that

$$\langle Au - Av, u - v \rangle = \sum_{i=1}^{n} \int_{\Omega} \int_{0}^{1} a_{ij} \left(x, \nabla v + t \left(\nabla u - \nabla v \right) \right) \frac{\partial \left(u - v \right)}{\partial x_{j}} \frac{\partial \left(u - v \right)}{\partial x_{i}} dt dx =$$

$$= \int_{0}^{1} \int_{\Omega} \sum_{i=1}^{n} a_{ij} \left(x, \nabla v + t \left(\nabla u - \nabla v \right) \right) \frac{\partial \left(u - v \right)}{\partial x_{i}} \frac{\partial \left(u - v \right)}{\partial x_{i}} dx dt \geq$$

$$\geq c_1 \int_{\Omega} \left[\sum_{i,j=1}^{n-1} b_{ij}(x) \frac{\partial (u-v)}{\partial x_i} \frac{\partial (u-v)}{\partial x_j} + b_{nn}(x) \frac{\partial (u-v)}{\partial x_n} \frac{\partial (u-v)}{\partial x_n} \frac{\partial (u-v)}{\partial x_n} \right] dx = c_1 \|u-v\|_{H_L}^2.$$

Therefore, the operator A is strictly monotone. The hemicontinuouty of operator A is evident.

Definition 2. The function $u(t,x) \in L_2(0,T;H_L)$ is called be generalized solution to the problem (*), if $\forall v(t,x) \in L_2(0,T;H_L)$, if the equality

$$\int_{0}^{T} \int_{\Omega} \left[\frac{\partial u}{\partial t} v + \sum_{i=1}^{n} a_i \left(x, \nabla u \right) \frac{\partial v}{\partial x_i} \right] dx dt = 0$$

holds and $u(0,x) = u_0(0)$. The last condition is treated in weak meaning, i.e $\forall w(x) = H_L$,

$$\lim_{t\to 0} \int_{\varOmega} u(t,x)w(x)dx = \int_{\varOmega} u_0(x)w(x)dx.$$

Theorem 2. Let the conditions (a) – (c) be hold. Then $\forall u_0(x) \in H_L$ the problem (*) has a unique solution.

The proof explicitly follows from Lemmas 1 and 2 (see [9]).

Received 09.12.2008

REFERENCES

- 1. Sobolev S.L. Izvestia AN SSSR. Math., 1954, v. 18, p. 3-50 (in Russian).
- 2. Aleksandrian R.A., Berezanskii Ju.M., Ilin V.A., Kostjucenko A.G. Amer. Math. Soc. Transl. (2), 1976, v. 105.
- Showalter R.E. Hilbert Space Methods for Partial Differential Equations. Monograph., Electronic Jurnal of Differential Equations. 01.1994.
- 4. **Ting T.W.** J. Math. Soc. Japan, 1969, v. 21, № 3, p. 440–453.
- Gaevski Kh., Greger K., Zakharis K. Non-linear Operator Equations and Operator Differential Equations. M.: Mir, 1978 (in Russian).
- Hakobyan G.S., Shakhbagyan R.L. Izvestia NAN RA. Mathematica, 1995, v. 30, p. 17–32 (in Russian).
- 7. **Hakobyan G.S.** Uchenie zapiski YSU, 1986, v. 161, № 1, p. 20–27 (in Russian).
- 8. Mikhlin S.G. Variational Methods in Mathematical Physics. M.: Nauka, 1970 (in Russian).
- 9. **Lions J.L.** Some Methods on the Solution of Non-linear Boundary Value Problems. M.: Mir, 1972 (in Russian).

Մկզբնական-եզրային խնդիր վերասերվող ոչ գծային պսևդոպարաբոլային հավասարումների մի դասի համար

Աշխատանքում ուսումնասիրվում է ոչ գծային վերասերվող պսնդոպարաբոլային հավասարումների մի դասի համար սկզբնական-եզրային խնդրի լուծման գոյության և միակության հարցը։ Ապացուցվում է, որ եթե L և M դիֆերենցիալ օպերատորները բավարարում են որոշակի պայմանների, ապա խնդիրն ունի միակ լուծում համապատասխան ֆունկցիոնալ տարածությունում։

Начально-краевая задача для одного класса нелинейных вырождающихся псевдопараболических уравнений

В работе рассматривается вопрос о существовании и единственности решения начально-краевой задачи для одного класса нелинейных псевдопараболических уравнений с вырождением.

Доказывается, что если дифференциальные операторы L и M удовлетворяют некоторым условиям, то начально-краевая задача имеет единственное решение в соответствующем функциональном пространстве.