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PLEIJEL TYPE IDENTITIES

N. G. AHARONYAN"
Chair of Probability Theory and Mathematical Statistics, YSU

In the present paper generalizations of classical Pleijel identities are obtained.
We refer these identities as Pleijel type identities. Particular cases of these iden-
tities are proved in [1], [3] and [5].
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Let D be a bounded convex domain in the plane R? with piecewise-smooth
boundary 0D. We also assume that 0D contains no line segments. Let be

a finite non-degenerate set (the points can be inside the domain, as well as outside
of D).
Let us fix the directed lines g,g,,....g, that intersect the domain D.

These lines generate chords g, D, i=1,..,n, that we denote by

2(2), x(g5)s--, 2(g,). The set {P.} consists of the endpoints of the above men-

tioned chords, lying on 0D. Hence, {P}”, — 0 D consists of 2n points. Denote by

p; the segment with the endpoints £ and P, while | p;, | is its length. We set

[p;1={ge G: gnp; # ¢},
where G is the space of directed lines in the plane.
Let Br{P,} be the minimal (finite) ring of subsets of G generated by all sets

[p;]. Let B={ge G: g intersects all x(g),i=1..,n}=x(g)], and 4 be
i=1

an element of algebra a (a{Q,} is the minimal algebra of G containing all sets
[p;]). ltis easy to see that

AnBer({R}u{g}).
Using R.V. Ambartzumian’s combinatorial formula (see [1] or [2]) for u(4 N B),
where 4 is the measure invariant with respect to all Euclidean motions in the
space G, we get
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HANB)= 3, pic;(B),(g)+ 2 pycy(DIp(g,)+
0:,9))

(B.F) (
+ 2 AU D=1y N ) = 1))
(B.9))
In (1.1) the sums are taken over all ordered pairs of points (in particular, in
the last sum along with the term £0; we have term Q;F). Asusual, /,(g) is the

(1.1)

indicator of the set A.The algorithm for calculating coefficients c¢; is given
in [1-3].
In the space (g,,g,,...g,) € G" we consider the measure

du™ =dg, - dg,,

where each dg, coincides with the element of invariant measure £ in the space G.
We integrate (1.1) by the measure d ™. Note, that (1.1) is valid for almost

all sequences of chords y(g,), ¥(g,),....x(g,), because 0D contains no line

segments. Therefore, for almost all y(g)),x(g,),....x(g,) the set {P}U{0.}

is non-degenerate.
TheMain Result. Integrating the left-hand side of (1.1), we obtain

[ uAnBYdu™ = [ 1, ,(g)dg=[1,(g)dg [ 1,(g)du™ =[1,(g)4x(g))" dg.
G” G”" [D] G”

Here we used

[ dg =4x(2) 2.1)
[x(g)]
Now we calculate the integrals for the sums in the right-hand side of (1.1).
We start with the second term, which can be easily calculated using formula (2.1).
We have

[du™ > piey(DIy(g)= Y pycy(A)Az,)". (22)
G" (Q:9)) (9.9

where y; = 7(g;)1s the length of the chord of domain D, passing through the
points O, and Q;. If points O, and Q; D, then possibly the line g, does not
intersect D and, therefore, X =0.

Let us integrate the first term in the right-hand side of (1.1). Arguing as in
[2], pages 156—-157, and [4], we get by symmetry
[du™ 3 pye,(B) (g;)=n[ ()" dg—4n(n-1) [[ (42,)"" cose cosa1 ,(g,,)dldl,,
G" (BP) A (&Dy?
where g, is the directed line joining the points /, and /, of 0D, while ¢, and
a, are the interior angles between y,, and 0D at the points / and /,,
correspondingly, that lie in the same half-plane with respect to g, .

Let us integrate the last sum in (1.1). Let [/ be the coordinate of the
point on 0D, from which the chord y(gi) emerges. For each point O, the

directed line from Q; to / is denoted by g, x,=x(g;), while p, is the
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distance between Q; and /. Denote by f,(f;) the right interior angle of

g, (g;) with 0D at /. Reasoning by analogy to [1] and [3], we get
[au™ 3 py Uyt )= Ty DI G ) =1 ) =
G" (£.9))

24”2 I (4ij)n_1pj1 [IA(j_vl)_IA(j+9Z)]Cosﬂjldl+
Q; oD

+4nY [ Q)" pyll (L) —=1,(1, j*)]cos B,dl.
Q; oD

Let us assume that / increases in the clockwise direction around 0 D. Then

1 1
pucosfdl = —Edpf,, pjicos B dl =5dp]2.,. (2.3)

Substituting (2.3) into the previous formula and integrating by parts, we
obtain

S LG D=L DA 2D | G UL GTD LG D,
s oD

2.4)
and
ST D=L 20D | G L) -1 Nz
K oD
(2.5)

here for fixed j, s enumerates the set {/, : j fixed} of points of discontinuity of

the expressions in square brackets.
Consider two cases.

1) The case Q; € D. We make the change of variable / — I" in (2.5), where
I" denotes the point other than [, where g 4 meets 0D. Using the relationship
1,50 =1,(",j), the integral in (2.5) can be written as
~2(n —l)aID @) D=1, D1pjed 2

Since p; + p;« = ¥ the sum of the integrals (2.4) and (2.5) is equal to

%(n =D [ Gr) U GD =101y = ppdd 2

D
Thus, the total contribution of the integral terms in (2.4) and (2.5) is

An(n—DY [ (4x,)" G D=1, D1pydx (2.6)

Q; 6D
2) The case Q; D (the point O, lies outside the domain D). In this case the
total contribution of the integral terms in (2.4) and (2.5) takes the form

I f_,-(l)p,z'l dy, =4,
oD

J. f;(l)pjzl* del* = A,
oD
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where /(1) =2(n—1)(4x,)" 1, D=L, D =1, )+ 1L )]

We made the change of variable /—[" in A4 and applied relationships
1G5 =1, 1,0, j5)=1,(, j*). Summing up the expressions obtained
for 4, we get

24= [ f;0pdx;+ | £;(Dpjed e
oD oD

Let us draw the tangents to the domain D from the point Q; and, thus, divide

the boundary 0D into two parts /, U [,. I, is the part of 0D between the tangency
points facing the point Q;. I is the complement to /;, [, =0D\/,. If /€1, then

I"el,, and hence X =Py =Pu =Xy - Similarly, if /el,, then I"el,, and
hence 7, =p,; —p;x= Xy We also have

dyy=x3dl, dyw=ypdl =dy.=—dy,, d =—dl.

Therefore,
24— 2 2 _ 2 2
= f JiDpydy; - I Ji D P d 1 e _J.fj(l)pﬂ d;;,.,+ff].(l)p/., A=
10l Lol I I

_,[fj(Z)sz‘z* dym _J.fj(l)pjz‘l* dy zj.fj(l)(pjz‘l _pjz'l*)dljl +J.fj(l)(,0,2'1 _sz‘z*)dﬂ(ﬂ =
II 12 Il 12
:‘ij(l)lﬂ (P + P )d 2y +Jff(l)Zﬂ(Pﬂ + P51 :—2jfj(l);(j, Pidi;+
I I, 1

+2.[ JiDxypydy; =2 .[ v.(DfiDxypuday,
I, oD

where

-1, if lel,
v(h=1 "
1, if lel,.

Thus, for integral terms of (2.4) and (2.5) we obtain
Y, [v,(0f;(Dpuxd 2.7)
Q; oD

Now let us evaluate the total contribution to the non-integral terms in (2.4) and
(2.5). Consider the following four cases.
1) O, and @, are interior points of D. We have (see [2]):

1 .
4n z _(4ij) lcjk(A)[é‘I;‘ +5j?k _(pjk +5kj)2 _(pkj +5jk)2]:
(k) 2 (2.8)

=—4n Y ()" cu(Dpuxn=—nY (4x) ci(ADpy,
(WA (k)

where g, =p; +6,; +5,.

2) Q; ¢D, O, ¢D and lie on different sides with respect to D. We have
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4n (4)(,;{)'” cu(Dd] +di —(py —d)" —(py —d))']=

() 2 (2.9)
=—4n Z (47(11{)’1_1 Cik (A)(pjk - dj _dk)pjk =-n Z (4ij)ncjk (A),Ojk,
(J:k) (J.k)

where y, =p, —d;—d,.
3) 0, ¢D, O, D and lie on the same side with respect to D. We have

4n’y, (4z,k)" e (DI(py +d ) = (P +d, + )" +(d + 1) —di 1=
G2 (2.10)

=—4n ) (4}(,1()”7 Cu(ADpu i =—n ) (4Z,k) Cu (AP s
(J:k) (k)

where d;—d, =p, .
4) The point Q; is outside of domain D, and (), is interior point for domain
D. We have

1 e
4n Z 5(411‘1() lcjk(A)[d? _(ij +dj)2 _(ij ~ Pk +dj)2 _(pjk _dj)2]=
(k) (2.11)

=—4n 2, (42 ) Cu(Apyxp=—n 2 (47 )" Cu(Ap -
(J:k) (k)

Thus we finally get the following identity that is a generalization of the
classical Pleijel identity:

f;(”dg—n _U 7" cosay cosa, I,(g,)dhdl, + Y c;i(Dpy i +

9Dy (9:,0))
+nZ(Il @) LG D=1, DIpyd yy + (2.12)
0;\ oD

+%VJ‘(Z)[1_ID(Q]')]Z?[1[1A (D=1, (J',l)—[IA(l,f)—IA(l,j)]pj;dl,-zj,

where
if Q;eDb,

1,
ID(Q-/)Z{O, it 0 D

Using the linearity property of (2.12), one can obtain the following relationship for
any function f with continuous derivative, satisfying f{0)=0:

J fQdg=n [[ f'(x)cosa cosay 1, (gp)dhdl+ 3, c;(Ap,f Q)+

@Dy’ ©0.0)
+Z[ [ o@D f ), G D=1, D1pd s + (2.13)
9;\ép

+%Vj(l)[l_ID(Qj)]f(Zjl)[IA(j+sl)_IA(j91)_[1A(Z’j+)_IA (l,j)]pﬂdﬂtﬂj-

Substituting 4=G in (2.13), we obtain the classical Pleijel identity (see
[1-3, 5]). The second particular case is obtained assuming that all points Q, lie
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inside the domain D. In this case (2.13) has the form of identity (1.14) from [3]
(see also (8.14) from [1, 6]). Finally, if 4 coincides with the set of lines
intersecting a segment, lying outside of domain D, then identity (2.13)
coincides with identity (2.8) from [7].
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®1yth mhuh inynipynibubkp

Usjuwnnwiipnid vnnwugqus tu O1hjhh qguuwlwb tnyunipjut pughwipugnid-
ubkpp, npnup wuduwind Bup @1 h nhyh tnyumpnibaibp: Uy inyunieiniutbph
dwubuynp nbhwypbpp noipu B pipdus [1], [3] b [5] wplumwnwbipubpnid:

ToxnecrBa Tuna Ilneiiens

B pabore momydeHbl 00OOIIEHHS KIIACCHYECKMX TOXIECTB llmeifens, KoTopwie

Ha3BaHbl TOXjaecTBamMu Tuna [Lneiiens. YacTHble Cilydyad 3THX TOXKICCTB IMOJYYCHBI B
paborax [1], [3] u [5].



