Physical and Mathematical Sciences

2009, № 2, p. 38-42

Mathematics

INFINITE ORDER AUTOMORPHISMS OF FREE PERIODIC GROUPS OF SUFFICIENTLY LARGE EXPONENT

A. S. Pahlevanyan*

Chair of Algebra and Geometry, YSU

In this paper we construct infinite order automorphisms of free periodic groups B(m,n) of sufficiently large period n with $m \ge 2$ generators. From the obtained results it follows that the quotient group of the group $\operatorname{Aut}(B(m,n))$ with respect to normal subgroup of inner automorphisms is infinite.

Keywords: free periodic groups, Burnside groups, group automorphisms.

Introduction. "Let n be a sufficiently large odd number. Characterize automorphisms of a free Burnside group B(m,n) of period n with m generators". This is the problem \mathbb{N}_2 8.53, a), proposed by A.Yu. Olshanskii in [1] in 1982. Recently E.A. Cherepanov published two works [2, 3] devoted to the study of automorphism groups of free Burnside groups B(m,n). Namely, in the work [2] normal automorphisms of groups B(m,n) for odd $n > 10^{10}$ and $m \ge 2$ are described. In [3] the existence of a free subsemigroup in the group Aut(B(m,n)) was shown.

We construct new automorphisms of infinite order in the group $\operatorname{Aut}(B(m,n))$.

The following notations are used: \overline{X} is a word X written on a circle, $U \equiv V$ means letter-for-letter equality of words U and V. $\partial(X)$ is the length of word X.

Let us consider the free Burnside group B(2,n) with basis $\{a,b\}$ and two automorphisms, given as follows:

$$\varphi: a \mapsto b, \quad \varphi: b \mapsto a^2b,$$
 (1)

$$\psi: a \mapsto ab^2, \ \psi: b \mapsto ab^3.$$
 (2)

Our main purpose is to prove

Theorem 1. Suppose that $n > 10^{10}$ is an arbitrary odd number. Then the automorphism φ of group B(2,n), defined by relation (1), has infinite order in Aut(B(2,n)).

^{*} E-mail: apahlevanyan@ysu.am

Theorem 2. Suppose that $n > 10^{10}$ is either an arbitrary odd, or $n = 16k \ge 8000$ is an arbitrary even number. Then the automorphism ψ of group B(2,n), defined by relation (2), has infinite order in Aut(B(2,n)).

Since any inner automorphism of the group B(2,n) has a finite order, from Theorems 1, 2 immediately implies:

Corollary 1. For any natural k automorphisms φ^k and ψ^k , defined by relations (1) and (2), are not inner.

Corollary 2. The quotient group $\operatorname{Aut}(B(2,n))/\operatorname{Int}(B(2,n))$ is infinite, where $\operatorname{Int}(B(2,n))$ is the group of inner automorphisms of group B(2,n).

From Theorems 1, 2 similar statements for $\operatorname{Aut}(B(m,n))$ for $m \ge 3$ immediately follow. We rather define automorphisms $\overline{\varphi}$ and $\overline{\psi}$ of the group B(m,n) as follows: $\overline{\varphi}(a_1) \rightleftharpoons \varphi(a_1)$, $\overline{\varphi}(a_2) \rightleftharpoons \varphi(a_2)$, $\overline{\varphi}(a_i) \rightleftharpoons id(a_i)$, $3 \le i \le m$, $\overline{\psi}(a_1) \rightleftharpoons \psi(a_1)$, $\overline{\psi}(a_2) \rightleftharpoons \psi(a_2)$, $\overline{\psi}(a_i) \rightleftharpoons id(a_i)$, $3 \le i \le m$. Then holds

Corollary 3. For $m \ge 3$ and arbitrary large natural n automorphisms $\overline{\varphi}$ and $\overline{\psi}$ have infinite order in $\operatorname{Aut}(B(m,n))$, and the quotient group $\operatorname{Aut}(B(m,n))/\operatorname{Int}(B(m,n))$ is infinite.

1. Auxiliary lemmas for automorphism φ .

Let
$$X_l \rightleftharpoons \varphi^l(a)$$
, $Y_l \rightleftharpoons \varphi^l(b)$ for any $l \ge 1$.

Lemma 1.1. For any $l \ge 1$ the following relations hold:

a)
$$X_{l+1} \equiv Y_l \equiv X_{l-1}^2 X_l;$$

b)
$$\partial(X_l) = \frac{2^{l+1} + (-1)^l}{3}$$
;

c)
$$\begin{cases} 2\partial(X_l) = \partial(X_{l+1}) - 1 \text{ for odd } l; \\ 2\partial(X_l) = \partial(X_{l+1}) + 1 \text{ for even } l; \end{cases}$$

d)
$$17\partial(X_{l-1}) \ge \partial(X_l)$$
 for $l \ge 6$;

e)
$$\partial(X_{l-1}) + 1 < 0.51 \partial(X_l)$$
 for $l \ge 8$;

f)
$$9\partial(X_{l-3}) > \partial(X_l)$$
 for $l \ge 6$.

Proof. a) $X_{l+1} \equiv \varphi^{l+1}(a) \equiv \varphi^{l}(b) \equiv Y_{l}$. The second equality follows from $X_{2} \equiv X_{0}^{2} X_{1}$ by induction, where $X_{0} \rightleftharpoons a$.

b)
$$\partial(X_1) = 1$$
, $\partial(X_2) = 3$. For any natural l denote

$$\partial(X_1) = x_1$$
, $a_1 = \partial(X_1) + \partial(X_{l-1}) = x_1 + x_{l-1}$, $b_1 = x_1 - 2x_{l-1}$.

We have $x_{l+1} + x_l = 2(x_l + x_{l-1})$ and $x_{l+1} - 2x_l = -(x_l - 2x_{l-1})$. From here we obtain the equalities $x_l + x_{l-1} = 2^l$, $x_l - 2x_{l-1} = (-1)^l$ and, finally, $x_l = \frac{2^{l+1} + (-1)^l}{3}$.

Proofs of statements c, d, e and f immediately follow from statement b.

Lemma 1.2. If $A^t A' \equiv B^r B'$, where the word A' is a start of A, B' is a start of B and $\partial (A^t A') \ge \partial (AB)$, there exists a word D such that $A \equiv D^k$ and $B \equiv D^s$ for some k and s. In particular, if A is a simple word, then $A \equiv D$ and $B \equiv A^s$.

For proof see item 1.2.9 of monograph [4].

Denote $X_{l-1} \rightleftharpoons A$, $X_{l-2} \rightleftharpoons B$, $X_{l-3} \rightleftharpoons C$, $X_{l-4} \rightleftharpoons D$. By Lemma 1.1 we have $X_l \equiv X_{l-2}^2 X_{l-1} \equiv BBA$. Note that A ends with B.

Later on, we suppose that Z is a simple word.

Lemma 1.3. If the word X_l is not a proper power, i.e. if for some word Z and integer k the equality $X_l \equiv Z^k$ holds, then k = 1.

Proof. The proof is carried out by induction on l.

- 1. Since $\partial(X_l)$ is odd, the case k=2 is impossible. Thus $k \ge 3$ and k is odd.
- 2. If $X_l \equiv Z^3 \equiv BBA$, then $\partial(B) < \partial(Z) < \partial(A)$. Therefore, Z starts with B, and Z is an end of A. Since A ends with word B and $\partial(B) < \partial(Z)$, then B is an end of Z. Hence, either $Z \equiv BFB$ or $Z \equiv B_1FB_2$, where $B_1F \equiv FB_2 \equiv B$. In the case of $Z \equiv BFB$ we have $BFBBFBBFB \equiv BBA$ and $\partial(A) = 4\partial(B) + 3\partial(F)$. This contradicts the inequality $\partial(A) \le 2\partial(B) + 1$. Thus, $Z \equiv B_1FB_2$ and $\partial(B_1) = \partial(B_2)$, then $B_2B_1FB_2B_1 \equiv B_1FX_{l-3}^2$. Therefore, $B_1 \equiv B_2$ and, finally, $B \equiv B_1F \equiv FB_1$. It means (see [4], point I.4.2) that $B_1 \equiv G^k$, $F \equiv G^s$ and $B \equiv G^{k+s}$.
- 3. Suppose that $X_l \equiv Z^k$, $k \ge 5$. Since $l \ge 5$, from $k\partial(Z) = 4\partial(B) \pm 1$ we obtain $\partial(Z) < \partial(B)$. Therefore $BB \equiv Z^t Z_1$, where $t \ge 2$, and by Lemma 1.2 we obtain $B \equiv Z^k$. It contradicts the inductive assumption.

Remark 1.1. If $l \le 5$, then the lengths of words X_1, X_2, X_3, X_4 are less than 17 and the word $\overline{X_5} \equiv \overline{bbaabbbaabaabaabaabbbaab}$ obviously doesn't contain a subword of form Z^4 .

Lemma 1.4. If $\overline{X_l}$ contains Z^k , then k < 17.

Proof. The proof is carried out by induction on l. For $l \le 5$ the validity of the statement follows from Remark 1.1. Assume that $\overline{X_l} = \overline{BBA} = \overline{DDCDDCCCDDC}$ contains Z^k and $k \ge 17$. Since $l \ge 6$, then $\partial(BBA) \le 17\partial(D)$, and we obtain $\partial(Z) < \partial(D)$. Indeed, assuming that $\partial(Z) \ge \partial(D)$, we obtain $\partial(BBA) = \partial(Z^{17})$ and, therefore, $\overline{BBA} = Z^{17}$. It contradicts Lemma 1.3.

Suppose that the length of the minimal subword of word $\overline{DDCDDCCCDDC}$ over the alphabet $\{C, D\}$ that covers the word Z^k is equal to 5. Taking into consideration that C ends with D, by direct checking we make sure that either C^2 or D^2 occurs in Z^k . Then by Lemma 1.2 either C or D is a proper power in defiance of Lemma 1.3.

Let us show that there doesn't exist a subword of word $\overline{DDCDDCCCDDC}$ over the alphabet $\{C, D\}$ with length 3 that covers Z^k . Indeed, otherwise it would occur in cyclic word \overline{A} , that contradicts the inductive assumption.

It remains to consider the case when the length of minimal subword M of word $\overline{DDCDDCCCDDC}$ over the alphabet $\{C,D\}$ that covers the word Z^k is equal to 4. If M letter-for-letter coincides with one of the words CDCC, DDCC, DCCC, DCCC,

2. Auxiliary lemmas for automorphism ψ .

Now we consider the case of automorphism ψ ; $\psi: a \mapsto ab^2$, $\psi: b \mapsto ab^3$. Let $U_l \rightleftharpoons \psi^l(a)$, $V_l \rightleftharpoons \psi^l(b)$ for any $l \ge 1$. We have $U_{l+1} \equiv \psi(U_{l-1})\psi(V_{l-1})^2$ and $V_{l+1} \equiv \psi(U_{l-1})\psi(V_{l-1})^3$. Therefore $U_l \equiv U_{l-1}V_{l-1}^2$ and $V_l \equiv U_{l-1}V_{l-1}^3$. Since the inequality $3\partial(U_t) + 6\partial(V_t) > 2\partial(U_t) + 6\partial(V_t)$ holds for any $t \ge 0$, then $3\partial(U_tV_tV_t) > 2\partial(U_tV_tV_tV_t)$ and, particularly, $3\partial(U_{l-1}V_{l-1}V_{l-1}) > 2\partial(U_{l-1}V_{l-1}V_{l-1})$. Denote $U_{l-1} = B$, $V_{l-1} = A$, $U_{l-2} = D$, $V_{l-2} = C$. Then, obviously, $3\partial(B) > 2\partial(A)$ and $3\partial(D) > 2\partial(C)$ hold.

Lemma 2.1. U_1 and V_1 are not proper powers.

Proof. The proof is carried out by induction on l. For $l \le 2$ the statement is obvious since $U_1 \equiv abb$, $V_1 \equiv abbb$, $U_2 \equiv abbabbbabbbabbb$, $V_1 \equiv abbabbbabbbabbb$. Thus $l \ge 3$.

1. Let
$$U_l = Z^k$$
 and $k \ge 2$. Then $BAA = DCCDCCCDCCC = ZZ...Z$.

Recording the words of this equality in a reverse order and shifting the last D to start, we obtain $\underbrace{Z_1Z_1...Z_1}_k \equiv D_1C_1C_1C_1D_1C_1C_1D_1C_1C_1$ and

 $(D_1C_1C_1C_1)^2D_1C_1C_1 \equiv Z_1^k$. Since $\partial(D_1C_1C_1D_1C_1C_1) > \partial(Z_1)$, then by Lemma 1.2 we have $D_1C_1C_1C_1 \equiv Z_1^p$, where $p \geq 2$, because $p \neq 1$ by $\partial(D_1C_1C_1) < \partial(Z_1)$. Hereof it immediately follows that A is a proper power. It contradicts the inductive assumption.

2. Now suppose that $V_l \equiv Z^k$ and $k \ge 2$. Then $V_l \equiv BAAA \equiv DCCDCCCDCCCDCCCC \equiv Z^k . \text{ As in item 1 we have}$ $\underbrace{Z_1Z_1...Z_1}_{k} \equiv D_1C_1C_1C_1D_1C_1C_1C_1D_1C_1C_1C_1$, $(D_1C_1C_1C_1)^3D_1C_1C_1 \equiv Z_1^k ,$

 $\partial(D_1C_1C_1C_1D_1C_1C_1C_1D_1C_1C_1) > \partial(Z_1)$, and again by Lemma 1.2 A is a proper power. The obtained contradiction proves Lemma 2.1.

Lemma 2.2. If $\overline{U_l}$ or $\overline{V_l}$ contains Z^k , then $k \le 20$.

Proof. The proof is carried out by induction on l. For $l \le 2$ the statement follows from lengths of $\overline{U_l}$ and $\overline{V_l}$. Suppose $l \ge 3$ and $k \ge 21$. We have $U_l \equiv BAA$, $V_l \equiv BAAA$, $B \equiv DCC$, $A \equiv DCCC$. Note that Z^k can't occur in \overline{CDCC} or in \overline{CDC} , since otherwise, it would occur in \overline{A} or \overline{B} , that contradicts the inductive assumption. As far as $21\partial(Z) < \partial(BAA) = 3\partial(D) + 8\partial(C)$, $3\partial(D) > 2\partial(C)$ and $k \ge 21$, then $\partial(Z) < \partial(D) < \partial(C)$.

- 1. Suppose that $\overline{U_l} \equiv \overline{BAA} \equiv \overline{DCCDCCCDCCC}$ contains Z^k . Since Z^k doesn't occur in \overline{CDCC} , it doesn't occur in \overline{DCCD} as well, since D is a beginning of C. Thus Z^k doesn't occur in any subword of $\overline{DCCDCCCDCCC}$ of length 4 over the alphabet $\{C,D\}$. Therefore, it covers either D^2 or C^2 . Then, according to Lemma 1.2, either D or C is a proper power. It contradicts the inductive assumption.
- 2. Now let $\overline{V_l} \equiv \overline{BAAA} \equiv \overline{DCCDCCCDCCCD}$ contain Z^k . In exactly the same way as for $\overline{U_l}$ we prove that either D or C is a proper power. The obtained contradiction proves Lemma 2.2.

Proof of Theorem 1. Let φ have finite order k in $\operatorname{Aut}(B(2,n))$, i.e. $\varphi^k \equiv id$. Then $a_1^{-1}X_k$ is equal to the empty word in B(m,n). There are only two letters in the word $a_1^{-1}X_k$ that can be reduced. Therefore, according to Lemma 1.4, its cyclic irreducible form doesn't contain nonempty word Z^{18} . This contradicts the Lemma 5.5 of [5] and the point 1 of Theorem 2 of [6], according to which every word that is equal to empty word in B(m,n) contains as a subword nonempty power Z^{1000} .

The proof of Theorem 2 repeats the proof of Theorem 1, changing $\langle \varphi \rangle$ by $\langle \psi \rangle$, $\langle a_1^{-1}X_k \rangle$ by $\langle a_1^{-1}U_k \rangle$ or $a_1^{-1}V_k \rangle$, $\langle Z^{18} \rangle$ by $\langle Z^{21} \rangle$ and referring to Lemma 2.2.

Received 12.12.2008

REFERENCES

- 1. Kourovskaya Tetrad': Unsolved Problems in Group Theory. Novosibirsk, 2006 (in Russian).
- 2. **Cherepanov E.A.** J. Algebra Comput., 2006, v. 16, № 5, p. 839–847.
- 3. Cherepanov E.A. Communications in Algebra, 2005, v. 33, № 2, p. 539–547.
- 4. **Adian S.I.** The Burnside Problem and Identities in Groups. M.: Nauka, 1975, (in Russian).
- 5. **Olshanskii A.Yu.** Math. Sb., 1982, v. 118, p. 203–235 (in Russian).
- 6. **Lysionok I.G.** Izv. Ross. Akad. Nauk. Math., 1996, v. 60, № 3, p. 3–224 (in Russian).

Բավականաչափ մեծ պարբերությամբ ազատ պարբերական խմբերի անվերջ կարգի ավտոմորֆիզներ

Աշխատանքում կառուցվում են $m \ge 2$ ծնիչներով և բավականաչափ մեծ n պարբերությամբ B(m,n) ազատ պարբերական խմբերի անվերջ կարգի ավտոմոր-ֆիզմներ։ Ստացված արդյունքներից հետևում է, որ $\mathrm{Aut}(B(m,n))$ խմբի քանորդ խումբն ըստ ներքին ավտոմորֆիզմների նորմալ ենթախմբի անվերջ է։

Автоморфизмы бесконечного порядка свободных периодических групп достаточно большого периода

В работе строятся автоморфизмы бесконечного порядка свободных периодических групп B(m,n) достаточно большого периода n с $m \ge 2$ порождающими. Из полученных результатов следует, что фактор-группа группы $\operatorname{Aut}(B(m,n))$ по нормальной подгруппе внутренних автоморфизмов бесконечна.