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INFINITE ORDER AUTOMORPHISMS OF FREE PERIODIC GROUPS
OF SUFFICIENTLY LARGE EXPONENT
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In this paper we construct infinite order automorphisms of free periodic
groups B (m,n) of sufficiently large period n with m >2 generators. From the

obtained results it follows that the quotient group of the group Aut(B (m,n))
with respect to normal subgroup of inner automorphisms is infinite.
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Introduction. “Let n be a sufficiently large odd number. Characterize
automorphisms of a free Burnside group B(m,n) of period n» with m generators”.

This is the problem Ne 8.53, a), proposed by A.Yu. Olshanskii in [1] in 1982.
Recently E.A. Cherepanov published two works [2, 3] devoted to the study of
automorphism groups of free Burnside groups B(m,n). Namely, in the work [2]
normal automorphisms of groups B(m,n) for odd n>10" and m=>2 are
described. In [3] the existence of a free subsemigroup in the group Aut(B(m,n))

was shown.
We construct new automorphisms of infinite order in the group
Aut(B(m,n)).
The following notations are used: Xisaword X written on a circle, U =V
means letter-for-letter equality of words U and V. 0(X) is the length of word X.
Let us consider the free Burnside group B(2,n) with basis {a,b} and two
automorphisms, given as follows:
pab, @:bra’b, (1)
w:iar>ab®, y:br>ab’. )
Our main purpose is to prove

Theorem 1. Suppose that n>10" is an arbitrary odd number. Then the
automorphism ¢ of group B(2,n), defined by relation (1), has infinite order in

Aut(B(2,n)) .
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Theorem 2. Suppose that n>10" is either an arbitrary odd, or
n =16k >8000 is an arbitrary even number. Then the automorphism i of group

B(2,n), defined by relation (2), has infinite order in Aut(B(2,n)).

Since any inner automorphism of the group B(2,n) has a finite order, from
Theorems 1, 2 immediately implies:

Corollary 1. For any natural k automorphisms ¢* and y*, defined by
relations (1) and (2), are not inner.

Corollary 2. The quotient group Aut(B(2,n))/Int(B(2,n)) is infinite, where
Int(B(2,n)) is the group of inner automorphisms of group B(2,n).

From Theorems 1, 2 similar statements for Aut(B(m,n)) for m>3 imme-
diately follow. We rather define automorphisms ¢ and @ of the group
B(m,n) as follows: §(a,) = p(a)), §(ay) = o(a,), Pla)=id(a), 3<i<m,
7(a) =y (a), 7(a) =y(a,), #(a)=id(a), 3<i<m.Then holds

Corollary 3. For m=>3 and arbitrary large natural » automorphisms
@ and w have infinite order in Aut(B(m,n)), and the quotient group

Aut(B(m,n))/Int(B(m,n)) is infinite.
1. Auxiliary lemmasfor automorphism ¢ .
Let X, =0 (a), Y, = ¢'(b) forany [>1.
Lemma 1.1. For any [/ >1 the following relations hold:
a) X, =Y =X.X;
2 4 (<1 .
3
20(X,)=0(X,,;)—1 for odd [;

{26(Xl):6(Xl+1)+1 for even /;
d) 170(X,_,)=0(X,) for [>26;
e) 0(X,,)+1<0.510(X,) for [>8;
f) 90(X,;)>0(X,) for [>6.

b) o(X))=

Proof. a) X, = o' (a)=¢' (b) = Y,. The second equality follows from
X, = X; X, by induction, where X, = a.
b) 0(X,)=1, 0(X,)=3. For any natural / denote
X)) =x, a=0(X))+0(X,))=x+x_,, b=x-2x_,.

We have x,,,+x =2(x,+x,_,) and x,, —2x, =—(x, —2x, ;). From here

we obtain the equalites x +x_, =2, x -2x_,=(-1) and, finally,
2[+1 + (_l)l
1= f

Proofs of statements ¢, d, e and f immediately follow from statement 5.
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Lemma 1.2. If A'A'=B"B’, where the word A’ is a start of A4, B’ is
a start of B and 6(A'A’")>0(AB), there exists a word D such that 4= D" and
B=D" for some k and s. In particular, if 4 is a simple word, then A=D and
B=4".

For proof see item 1.2.9 of monograph [4].

Denote X, , =4, X,, =B, X,,«=C, X,,«—=D. By
Lemma 1.1 we have X,=X],X, = BBA. Note that 4 ends with B.

Later on, we suppose that Z is a simple word.

Lemma 1.3. 1f the word X, is not a proper power, i.e. if for some word
Z and integer k the equality X, =Z *holds, then & =1.

Proof- The proof is carried out by induction on /.

1. Since O(X,) is odd, the case k=2 is impossible. Thus k=3 and
k is odd.

2.1f X, =7’ = BBA, then d(B)<d(Z)<d(A). Therefore, Z starts with B,
and Z is an end of 4. Since 4 ends with word B and 0(B)<0d(Z), then B is an
end of Z. Hence, either Z=BFB or Z=BFB,, where BF=FB,=B. In the
case of Z=BFB we have BFBBFBBFB = BBA and 0(A)=40(B)+30(F) . This
contradicts the inequality 6(4)<20(B)+1. Thus, Z=B/FB, and 0(B,)=0(B,),
then B,B,FB,B, =B,FX;,. Therefore, B, =B, and, finally, B=BF =FB, 1t
means (see [4], point [.4.2) that B, = G*,F=G"and B=G"".

3. Suppose that X, =7Z" k>5. Since [>5, from k&(Z)=43(B)+1 we
obtain 9(Z)<0d(B). Therefore BB=Z'Z,, where t>2, and by Lemma 1.2 we

obtain B=Z" . It contradicts the inductive assumption.
Remark 1.1. 1f [ <5, then the lengths of words X, X,, X;, X, are less

than 17 and the word Z = bbaabbbaabaabaabbbaab obviously doesn’t contain a
subword of form Z*.
Lemma 1.4. If X, contains Z* , then k<17 .

Proof. The proof is carried out by induction on /. For /<5 the
validity of the statement follows from Remark 1.1. Assume that

X, = BBA=DDCDDCCCDDC contains Z° and k>17. Since [>6, then
O(BBA)<170(D), and we obtain 0(Z) < d(D). Indeed, assuming that 0(Z)=0(D),

we obtain 0(BBA)=03(Z'"") and, therefore, BBA=Z"".1t contradicts Lemma 1.3.

Suppose that the length of the minimal subword of word DDCDDCCCDDC
over the alphabet {C, D} that covers the word Z* is equal to 5. Taking into

consideration that C ends with D, by direct checking we make sure that either C*

or D* occurs in Z*. Then by Lemma 1.2 either C or D is a proper power in
defiance of Lemma 1.3.
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Let us show that there doesn’t exist a subword of word DDCDDCCCDDC
over the alphabet {C, D} with length 3 that covers Z ¥ . Indeed, otherwise it would
occur in cyclic word Z, that contradicts the inductive assumption.

It remains to consider the case when the length of minimal subword M of
word DDCDDCCCDDC over the alphabet {C, D} that covers the word Z* is
equal to 4. If M letter-for-letter coincides with one of the words CDCC, DDCC,
DCCC, CDDC, CCCD or CCDD, then Z* occurs in Z, that contradicts the

inductive assumption. But if M = DCDD , then D* occurs in Z* as an end of the
base of occurrence D*CD=*D, and by Lemma 1.2 D is a proper power. It
contradicts Lemma 1.3. It remains to consider the case M = DDCD . By definition
we have D=X, ,=X, X, (X, 5, C=X, =X, X, X,_,. Since [>6, then
from statement c¢) of Lemma 1.1 the inequality 0(DDCD) <150(X,_5) follows. It

means that d(Z)<d(X, 5) and X ; 5 occurs in Z* . By Lemma 1.2 the word X,

is a proper power. It contradicts Lemma 1.3. The Lemma is thus proved.
2. Auxiliary lemmas for automor phism y .

Now we consider the case of automorphism v ; y :a+>ab*, w:b+>ab’.
Let U = v'(a), V= w'(b) for any />1. We have U, =wU,_)w¥,) and
Vii=wU, ) w(,,). Therefore U, =U, V>, and V,=U, V},. Since the
inequality  30(U,)+60(V,) >20(U,)+60(V,) holds for any ¢>0, then
30UV, >20U VYY) and, particularly, 30(U,_ V)V, >20U, Vi ViaVis).-
Denote U,_, =B, V,,=A4, U,_,=D, V,_,=C. Then, obviously, 30(B) > 20(4)
and 30(D) > 20(C) hold.

Lemma 2.1. U, and V, are not proper powers.

Proof- The proof is carried out by induction on /. For /<2 the
statement is obvious since U, =abb, V,=abbb, U, =abbabbbabbb
V, = abbabbbabbbabbb . Thus [>3.

1. Let U =2Z" and k>2. Then BAA=DCCDCCCDCCC=7Z..7.

k
Recording the words of this equality in a reverse order and shifting the
last D to start, we obtain Z,7Z,.Z,=DCC(C,DCCCDCC, and
k

(D,C,C.C,)'DC.C,=Z} . Since (D,C,C,C,D,C,C,)>(Z,), then by Lemma 1.2
we have D,C,C,C,=Z", where p>2, because p=#1 by d(D,C,C,)<0d(Z,).
Hereof it immediately follows that A4 is a proper power. It contradicts the inductive
assumption.

2. Now suppose that V, =7* and k>2. Then
V, = BAAA= DCCDCCCDCCCDCCC=Z*. As in item 1 we have
ZZ.Z =DC(CCDCCCDCCCDCC,, (DCCCYDCC,=Z),
%/_J

k
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obccchbcCccce,bCcC)>0(Z,), and again by Lemma 1.2 4 is a proper
power. The obtained contradiction proves Lemma 2.1.

Lemma 2.2. 1f Ulor Vz contains Z*, then k <20.

Proof. The proof is carried out by induction on /. For /<2 the statement
follows from lengths of U, and V, Suppose />3 and k=>21. We have

U, =BAA, V,=BAAA, B=DCC, A=DCCC. Note that Z* can’t occur in

CDCC orin CDC, since ,otherwise, it would occur in A or E, that contradicts
the inductive assumption. As far as 210(Z)<d(BAA)=30(D)+80(C),

30(D)>20(C) and k >21, then 6(Z)<8(D)<8(C).

1. Suppose that U,EBAAEDCCDCCCDCCC contains Z*. Since Z*
doesn’t occur in W, it doesn’t occur in DCCD as well, since D is a
beginning of C . Thus Z* doesn’t occur in any subword of DCCDCCCDCCC of

length 4 over the alphabet {C,D}. Therefore, it covers either D* or C?*. Then,

according to Lemma 1.2, either D or C is a proper power. It contradicts the
inductive assumption.

2. Now let VZEBAAAEDCCDCCCDCCCDCCC contain Z* . In exactly

the same way as for Uz we prove that either D or C is a proper power. The

obtained contradiction proves Lemma 2.2.
Proof of Theorem 1. Let ¢ have finite order k£ in Aut(B(2,n)), i.e.

¢* =id. Then a;'X, is equal to the empty word in B(m,n). There are
only two letters in the word a;'X, that can be reduced. Therefore,
according to Lemma 1.4, its cyclic irreducible form doesn’t contain nonempty

word Z'®. This contradicts the Lemma 5.5 of [5] and the point 1 of
Theorem 2 of [6], according to which every word that is equal to empty word in

B(m,n) contains as a subword nonempty power Z'*.
The proof of Theorem 2 repeats the proof of Theorem 1, changing «@»

by «y», «a;'X,» by «a;'U, or a;'Vy», «Z"™» by «Z*» and referring to

Lemma 2.2.
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Pujujutwswth ks wuppbipnipjudp wqun wuppbpulut judpbph
winftipg Jupgh wifwnninpphquitp

Ushumnnwiipnid Junnigynid k. m =2 $upsubipny b puduljutwswh ks n
wuppbpnipjudp B(m,n) wquu wuppkpulub dpbph widkpe Jupgh wdunndnp-
dhquutn: Unwgws wpnyniupubphg hbnbmd E, np Aut(B(m,n)) tudph pwunpn
Junudp pun tbipphtt wjundnpdhquutiph inpdw) Buipwjudph wudbpy k:

ABTOMOP(]H3MBI OECKOHEUHOTO MOPsIIKAa CBOOOJHBIX MEPUOJUYECKUX TPYIIT JOCTATOYHO
OopIIOro TIEpHoaa

B pabote crposiTtcs aBTOMOPGHU3IMBI OECKOHEYHOTO TOPSIKAa CBOOOMHBIX TIEPHOIH-
YeCKUX TPyl B(m,n) IOCTaTOYHO OOJBILIOTO MEpHOJA 7 ¢ m>2 TOpoKAaromuMu. 13

MOJYYEHHBIX Pe3yJIbTaToOB CIEAYET, UTO (haKTop-Trpymnma rpyrnsl Aut(B(m,n)) 110 HOpMaJb-
HOIl NOATpYIIle BHYTPEHHUX aBTOMOP(HHU3MOB OECKOHEUHa.



