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In the present paper the construction of the approximate solution to the initial-
boundary value problem for the pseudoparabolic equation using finite-element
method is considered. It is proved that the costructed sequence converges to the
exact solution and error estimate is obtained.
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1. Let Q2cR" be abounded domain with a smooth boundary T', >0.
The following initial-boundary value problem

gL(u(t,x)) + M (u(t,x)) =0, xe, M
ul,. =0, 2)
ul_ = uy(0), 3)
where
L(u)= _injz__lla%{by (x)%”i} . Mu)= —éla%(ag (x)%} ,

b (x)=b;(x), a;(x)=a;(x) (i,j=12,...,n) are continuous functions in Q and
inequality
2 2
Z bij (x)éég; 2¢ |§|

i,j=1

holds for Vxe 2, VEeR", was investigated by R.A. Aleksandrian in [1]. The

problem (1)—(3) for the case, when the operator L is linear, M is nonlinear and the
operators L and M may degenerate, was investigated by G.S. Hakobyan, R.L.
Shakhbaghyan (see [2]). The general case (when the operators L and M are
nonlinear) are studied in [3], [4] and [5]. In [6] with the help of Galyorkin method
the existence of solution for (1)—(3) was proved.
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In this paper we construct an approximate solution for the problem (1)—(3)
using the finite-element method for the case 2€(0,1)x(0,1)cR*, Lu=—-Au,
2 2
Mu =— 6—124 - G_th .
ox~ 0oy

2. Definition. The function u €L, (O,T;V;/IZ(Q)] is called a weak solution

of the problem (1)-(3), if u, € L, (0, T;ﬁ/;(g)j and for Vv(x) € W L(£2) holds the
equality

[ ag(Vu)«Vvdxdy+ | ( ——————— }dxdy: [ fvdxdy. (*)
t 0 0

Q
It was proved [1] that the equality (*) has a unique solution. Now we const-
ruct an approximate solution to the problem (*) using the finite-element method.

Suppose we partition the domain €2 =(0,1)* into squares with side # with
respect to x and y, and further divide the obtained squares into triangles (see Fig. 1)

Xy —X =h, i,j=1,2,....n,
1
y_/+1_J/j=h, h=;.

We construct piecewise linear functions ¢, (x,y) following the rule below
@i (X3, =D, 0;(x,9,) = 0;(x15 Y 140) = 0;(x, Y 140) = 05 (x40, 0,) =
= q)ij(xmlﬂyj—l) = (Dg,'(xi—lﬂyj—l) =0,
whereas they are linear inside the domain of any triangle. In the remaining triangles
of the square [0,1]x[0,1] we assume ¢, (x,y)=0.As result we get N =(n— 1)?

basis functions. Let us set o, ={(ih, jh),
i,j=12,...,n—1}, and enumerate the points

of the set w, (for example, (ih,jh)=

v I
=4 ), then the basis functions ¢,
TN, ( JLAN i ] ’
VI VIII will be renumerated as ¥,,%,...,Py, corres-
\4 \4 pondingly. Thus by construction w,(4,) =0,

(kr=1,2,..., n-1).
Denote by S, the linear space generated
by the functions v, (i=1,2,...,N). Note that

Fig. 1. dimS, =N and S, ={veC(£2), v is linear in
every triangle and v=0 on 0(2 }.
oY,
Ox

It is easy to see that S, W(£2) is a subspace. To calculate and

oy,

. we use the following Table:
X
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I i 1l v v VI VL[ Vil
E 1 1 1 1
N — 0 - 0 0 - 0 -
ox h h h h
we | L o | . | 21 o 1 11,
ox h h h h
Denote

N
Xy ={uN(t,x,y) =Y a, (O, (x,y), o, (1) e C'[0,T],p, € Sn;i=1,2,...,N}.

i=1
To find the weak solution to the problem (1)—(3), we use the Galyorkin
method

M=

i=l 0 ox Ox ay ay
= [ fx, v (x,p)dxdy, j=12,..,N,
0

which is equivalent to

i=1

[V, dxdy+§jai(z)[—‘-—-——"—-‘]dxdy=
0

y ' y al// (// al// W/
a; ()| vy, o) || =t -t |dedy =
;‘ [ ’}g !J; ox Ox Oy Oy &)
= [ f@.x W (x,y)dedy,  j=12,.,N.
Q0
We can rewrite the equality (4) in the matrix form
By@+My By (@) =Fy, (5)
Where ﬁN z(al,a2,'--aaN)’ FN I(ffwl(x,y)dxdy,_,.,J.fl//N(x,y)dxdy],
0 Q

N
oy, ¥, Oy, ¥; . .
M, = (}E(iﬁ—iﬁJ dx dyJ . It is easy to check that the matrix M
ij=1

A E 0 0 - 0 0 O
E 4 E 0 - 0 0 O
has the form M, = 0 E A E 0 O O , where E 1s a unit matrix,
o 0 0 0 - F A F
o 0 0 0 --- 0 FE A4
and A is the following matrix of order (n—1)x(n—1):
o -1 0 -~ 0 O
-1 0 -1 -~ 0 0
e -1 0 - 0 O
-1 - -1 0
0 0 -1
-1 0
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Let us denote by «,(?)(/=1,2,....,N) the solution to the system of
differential equations (5) with conditions
a,0)=c, (i=12,...,N), (6)
where c; are the expansion coefficients of the function u,(x,y) with respect to
basis y;(x,y) . Thus, we obtain the following sequence of the functions
N
y (1,%,7) = 2o (O, (x, ) -

i=1
The sequence {u;(t,x, ¥)}y- converges in norm L, (O,T ;WIZ(Q)) to the

weak solution of the problem (1)—(3) (see Theorem 2 in [6]).

3. To find the numerical solution of the system (5), we use the & - method
(see [7, 8]). Suppose we partition [0,7] into equal parts with step Ar. Denote
,B]]f, = By (kAt) = (o, (kA?),...,ay(kAt)) . Now we replace the system (5) by the

following difference system
k+1

k
NA—tﬁN + My (OB +(1-0)By)=0F" +(1-0)F} , (7)
where F{ = F, (kAt), 0<O<1.
For every k& we get the linear system of equations. We choose the parameter

€ such that the matrix K =£+9M y 18 positive | € <min l;; . Then
At At ||

we may represent the system of equations (7) in the following form (see [7])
1
H'Y=|—-(1-0)M } C+OF + OF)
|: Af ( ) v | By N N ’ )
HBM =Y

N
where K = H' H . Denote u]’if =Y a;(kAtyy,(x,y) . It is easy to verify that
i=l1

* k 2
Uy — U . =0(At7).
N N HLZ[O,T;WIZ(.Q)j (A7)
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dhpowynp mwppbph dkpanp Unpkjuwhtt yubinnuywpwpnjujwt hwjuwuwpdwi hwdwp

Ushiwtnwiipnid  nuunidbwuhpynd £ dnghjuyht wulpnuywpwpnjuljui
hwjwuwpdwt hwdwp ulqpiwlui-tqpuyhtt ugph msdwt Unnwygnp Junnignudp
Ytpgunjnp wwpptph dkpngni:

Uwugnigynid k, np wyn dkpnnnyg junnigyus hwenppuljunipiniip gniqudhunid
E &oqnhwin inisdwtin: Unnwugyt) E ujupwh guuwhwwnwluip:

Merton (l)I/IHI/ITHBIX OJIEMCHTOB 1A MOJCIBHOTO HCCB,Z[OHapa6OJ'II/I‘-I€CKOFO YpaBHCHUSA

B pabote mMeTon0oM (UHUTHBIX DJIEMEHTOB HCCIENYETCs MPUOIU3UTETHHOE
MOCTPOEHHE HaYyaIbHO-KPAaeBOM 3a/1aui Ui MOAEIBHOTO MICEeBAO0NApadoInIecKoro
ypaBHEHHSI.

JlokaspIBaeTcsi, 4TO TOCJIEAOBATEIbHOCTh, MOCTPOCHHAS TaKUM METOJIOM,
CXOIUTCA K TOYHOMY peleHnto. [lomydeHa oneHka omuoOKu



