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ON {2,3} -HYPERIDENTITIES IN INVERTIBLE {2,3} -ALGEBRAS
WITH A BINARY GROUP OPERATION
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In the present paper the invertible {2,3} -algebras with a binary group
operation and with balanced first sort {2,3} -hyperidentities having length 4 are
characterized.
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Introduction. Let Q be a nonempty set and »n be a nonnegative integer.
We define Q" as the direct power of set O, i.e. Q" is theset of n-tuples

of elements from Q. The mapping A4:Q" — Q is called n-ary operation on
the set O, and the number n is the arity of the operation A. The pair
0(A), where A4 is a mn-ary operation, is called n-quasigroup or n-ary
quasigroup [1, 2], if any set of n elements out of xi, x,..., X, X,+; uniquely
defines the nt+l-st one in the equality A(x,x,,...,x,)=x,,,. In other words,

Q(4) is a n-quasigroup, if the equation A(a,...,a; ;,X,a;,,....,a,)=>b has a

unique solution for any a,...,a, ;,a a,, beQ and for any i=12,..,n. In

(ESEIE
this case the operation 4 is called a quasigroup operation. For n=1 the
operation 4 is a bijection, and for n=2 the n-quasigroup Q(A4) is called a

binary quasigroup or simply a quasigroup, and for n=3 the n-quasigroup
0(A) is called a ternary quasigroup.

Let 4 be a quasigroup operation of arity n, and let A(x,....x,)=y. If we
replace the elements X > X 5eees X by fixed elements a,,a,,...,a, €0, respect-
tively, then A(x,...,x,) takes the form A(xl,...,xkl_l,al,xle,...,xkz_l,az,...), and
we come to the new operation B(xl,...,xkl_l,xkl+1,...,xk2_l, ..,x,) of arity n—m.

Obviously, B is a quasigroup operation, which is called the retract of A.
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The following second order formula [3] is called a hyperidentity [4, 5]:
VX)X, VX, X, (W = W),
where X,,..., X, are functional variables, and Xx,,...,x, are subject variables in

words (terms) W;, W,. The number m is called a rank of a hyperidentity.
Usually a hyperidentity is specified without universal quantifier prefix:
W=W,. If a rank m>1, the hyperidentity is called nontrivial, and if arities are
| X, =n,,..., |X,, |=n,, the hyperidentity W,=W, is called an {n,,...,n,,} -hyperi-
dentity. The satisfiability of a hyperidentity is defined in accordance with its
quantifier prefix.

A hyperidentity is called balanced, if each subject variable of the
hyperidentity occurs in the both parts of the latter one, whereas only once. A
balanced hyperidentity is called a first sort hyperidentity, if the subject
variables in the left and right parts of the equality are ordered identically. The
number of subject variables in a balanced hyperidentity is called the length
of this hyperidentity. The classification of associative hyperidentities and the
criteria of their satisfiability in g- and e-algebras are given in [4—6]. For solutions
of analogical problems for ternary associativity hyperidentities in invertible
algebras see in [4] (also see [2]).

In the present paper the criteria of satisfiability of first sort balanced {2,3} -
hyperidentities of length 4 in invertible {2,3} -algebras with binary group operation

are investigated.
§ 1. Preliminary Results. We call the algebra Q(2) with binary and

ternary operations a {2,3} -algebra. The {2,3} -algebra is nontrivial, if the sets of
its binary and ternary operations are not one-element. The algebra Q(2) is called
invertible, if Q(A) is a quasigroup (for some arity) for any operation 4€ 2.
Theorem 1 [7].
1. If the {2,3} -hyperidentity, given by the equality
((x, y, 2),u) = (x,(y,2,u)),
is satisfied in an invertible nontrivial {2,3} -algebra, then every functional variable
is repeated in it at least twice. Hence, such hyperidentity has the unique form:
XY (x,y,2),u) = X (x,Y(y,2,u)). @)
2.If the {2,3} -hyperidentity, given by the equality
(%, ¥)u,v) = (3, (3, 0),V),
is satisfied in an invertible nontrivial {2,3} -algebra, then every functional variable
is repeated in it at least twice. Hence, such hyperidentity has the unique form:
Y(X(x,»),u,v)=Y(x,X(y,u),v). 2)
3.If the {2,3} -hyperidentity, given by the equality
((x, y),u,v) = (x,y,(u, v)),
is satisfied in an invertible nontrivial {2,3} -algebra, then every functional variable

is repeated in it at least twice. Hence, such hyperidentity has the unique form:
Y(X(x,p),u,v)=Y(x,y, X (u,v)). 3)



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 37-41. 39

4. If the {2,3} -hyperidentity, given by the equality
((x, y,2),u) =((x, ), 2, u),
is satisfied in an invertible nontrivial {2,3} -algebra, then every functional variable
is repeated in it at least twice. Hence, such hyperidentity has the unique form:
XY (x,y,2),u) =Y (X(x,y),z,u). “4)
5.If the {2,3} -hyperidentity, given by the equality
((x, y,2),u) = (x,(y,2), u),
is satisfied in an invertible nontrivial {2,3} -algebra, then every functional variable
is repeated in it at least twice. Hence, such hyperidentity has the unique form:
XY (x,y,2),u) =Y (x, X (y,2), u). )
6. If the {2,3} -hyperidentity, given by the equality
((x, y,2),u) = (x,y,(z,u)),
is satisfied in an invertible nontrivial {2,3} -algebra, then every functional variable
is repeated in it at least twice. Hence, such hyperidentity has the unique form:
XY (x,,2),u)=Y(x,,X(z,u)). (6)

§ 2. Satisfiability Criterion for Hyperidentities (1)—(6).

Theorem 2.1. Suppose that an invertible {2,3} -algebra Q(X) has a
binary operation (-)e 2, such that Q(-) is a group. Then the hyperidentity (1)
is satisfied in the algebra Q(2), iff each ternary operation 4 €2 is defined
by the rule 4;(x,y,z)=x-y-z-t,, where t, € Z(Q) (which is the center of the
group QO()), and each binary operation B; €2 is defined by the rule
B;(x,y)=a,;(x-y), where a;:Q — Q is a bijection.

Proof: The proof of sufficiency is established by direct checking:

a;(x-y-z-t;-u)y=a;(x-y-z-u-t).

Let’s prove its necessity.

Let the hyperidentity (1) be satisfied in the given algebra Q(2). If we
substitute X =(-), Y =4, in (1), then we get 4, (x,y,z) - u=x-A.(y,z,u).

If here u = e, which is the unit of the group Q(:), then

A(x,y,2)=x-A4(y,z,e)=x-4(»,2),
where 4, is a quasigroup operation, and 4,(y,z)=4.(y,z,e) .

Coming back to the equality (1), we get x-A(y,z)-u=x-y-A4,(z,u),
whence we get A (y,z)-u=y-A(z,u), and at wu=e we have
A(y,z)=y-A(z,e)=y-u(z), where 1, :Q— Q is a bijection, i.e.

A, y,2)=x-4(y,z)=x"y- p;(z).

Again, taking into account (1), we get x-y-u(z)-u=x-y-z-uu),
Hu(z)-u=z-pu(m), and at u=e we have p(z)=z-p(e)=z-t;, where
t,=u(e)eQ, 1e. A(x,y,z)=x-y-z-t;. Now, taking into account the previous
equality, we get z-t,-u=z-u-t,, i.e. t,€Z(Q) is the center of the group QO().
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Thus, each ternary operation 4, €2 has the following form:
A(x,y,z)=x-y-z-t,, where t, € Z(Q).

Further, if B, is any binary operation from 2', and we substitute
X=B,Y=4, in (1), then we get B,(x-y-z-t,u)=B,(x,y-z-u-t;), and at
x=e, zztl._l, we have Bj(y,u)=Bj(e,y-z‘l.’1 ‘u-t;)=B,(e,y-u)=a,;(y-u), where
a;:Q—>Q 1is a bijection, and «;(x)=B;(e,x). O

Theorem 2.2. Suppose an invertible {2,3} -algebra Q(2) has the binary
operation (-) € X', such that Q(-) is a group. Then the hyperidentity (2) is satisfied
in the algebra Q(2), iff each ternary operation 4 €2 is defined by the rule
A(x,y,z)=A(x-y,z), where 4 :0° > (Q is a quasigroup operation and each
binary operation B; € X is defined by the rule B,(x,y)=x-y-f;, where ¢, € Z(Q)
(the center of the group QO()).

Proof: The proof of sufficiency is established by direct checking:

Ax-y-t,-uvy=A4(x-y-u-t,v).
Now let’s prove its necessity.
Let the hyperidentity (2) be satisfied in the given algebra Q(2). If we

substitute X =(-), Y = 4, in (2), then we have A4.(x-y,u,v)=A4,(x,y-u,v).

If x=e, then A(y,u,v)=A(e,y-u,v)=A4(y-u,v), where 4 is a
quasigroup operation, and 4 (x,y)= 4;(e,x,y). Hence, from (2) at X =B, Y = 4,
we get 4(B;(x,y) u,v)=4,(x-B;(y,u),v), whence after reduction by v we have
B;(x,y)-u=x-B;(y,u),and at u=e we get

B;(x,y)=x-B;(y,e)=x-1,(y),
where ,(y)=B,(y,e) and x-u,(y)-u=x-y-p, ), ie. p,(v)-u=y-u,@),
and at w=e we get w(y)=y-p(e)=y-t;,, t;=u;(e)eQ. Therefore,
yet,ru=y-u-t;, ie t, €Z(Q). O

Theorem 2.3. Suppose an invertible {2,3} -algebra Q(2) has the binary
operation ()€ 2, such that Q(:) is a group. Then the hyperidentity (3) is satisfied
in the algebra Q(2), iff each ternary operation 4 €2 is defined by the rule
A(x,y,z)= p;(x-y-z), where u,: Q0 — Q is a bijection, and each binary operation
B; €2 is defined by the rule B;(x,y)=x-y-t;, where ¢, € Z(Q) (which is the
center of the group O(")).

Proof: The proof of sufficiency is established by direct checking:

i(x-y-t-u-v)y=p(x-y-u-v-t,).

Let’s prove its necessity.

Let the hyperidentity (3) be satisfied in the given algebra Q(2). If we

substitute X =(-), Y =4, in (3), then we get 4, (x-y,u,v)=A(x, y,u-v), whence
at x=e we have 4 (y,u,v)=A4(e,y,u-v)=A4(y,u-v), where A is a quasigroup
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operation, and A,(x,y)= A4 (e,x,y). Hence, A (x-y,u-v)=A4(x,y-u-v), and at
x=e=u we get A(y,v)=A4A(e,y-v)=u(y-v), where u is a bijection, and
4;(x) =2, (e,x). Thus, 4,(x,y,2)=4(x,y-2) = p;(x-y-2).
Again, from (3) at X =B, and Y = 4, we get
(B (x, ) u-v)=p(x-y-B,(u,v)).

Therefore, B,(x,y)-u-v=x-y-B,;(u,v),and at u=v=e we have
B;(x,y)=x-y-B;(e,e)=x-y-t;,and x-y-t,-u-v=x-y-u-v-i;,le t; € Z(Q). O

The following results have similar proofs.

Theorem 2.4. Suppose an invertible {2,3} -algebra O(2X) has the binary
operation (-)€ X, such that Q(-) is a group. Then the hyperidentity (4) is satisfied
in algebra Q(2)), iff each ternary operation 4, € 2 is defined by the rule

A(x,y,z)=t,-x-y-z, t;€0Q,
and each binary operation B; €2 is defined by the rule B;(x,y)=s, -x-y,

s; €0, where s, -t, =t;-5;.

Theorem 2.5. Suppose an invertible {2,3} -algebra Q(2') has the binary
operation (-)€ X, such that Q(-) is a group. Then the hyperidentity (5) is satisfied
in the algebra Q(2), iff each ternary operation 4 €2 is defined by the rule
A (x,y,2)=6.(x)-y-z, where 6,:0 — Q is a bijection, and each binary operation
B; €2 is defined by the rule B;(x,y)=x-y-{,, where {, € Z(Q) (which is the
center of the group Q()).

Theorem 2.6. Suppose an invertible {2,3} -algebra Q(2) has the binary
operation ()€ X, such that O(-) is a group. Then the hyperidentity (6) is satisfied
in the algebra Q(2), iff each ternary operation 4 €2 is defined by the rule
A(x,y,2) = 1;(x,y)-u, here 1,:Q0*> —>(Q is a quasigroup operation and each
binary operation B; €2 is defined by the rule B;(x,y)=x-¢,(y), where
@, 0 — 0 isabijection.

Received 04.03.2009

REFERENCES

Belousov V.D. n-ary Quasigroups. Kishinev: Shtiintsa, 1972 (in Russian).

Usan J. n-groups in the Light of the Neutral Operations. Electronic version, 2006.

Maltsev A.l. Algebraic Systems. M.: Nauka, 1970 (in Russian).

Movsisyan Yu.M. Introduction to the Theory of Algebras with Hyperidentities. Yerevan: YSU
Press, 1986 (in Russian).

5. Movsisyan Yu.M. Hyperidentities and Hypervarieties in Algebras. Yerevan: YSU Press, 1990
(in Russian).

Movsisyan Yu.M. Russian Math. Surv., 1998, v. 53, Ne 1, p. 57-108.

7. Ghumashyan H.E. Uch. Zapiski EGU, 2008, Ne 1, p. 141-142 (in Russian).

L=

>



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 3, p. 37-41.

Gpluntn jadpuyghtt gnpdnnmipjudp {2, 3} -hwtpuwhwphubtpnid
{2, 3}-ghpunyumpinitubph dwuht

Upjuwwnwiipnid punipugpynud o Epljuntn judpughtt gnpsnnnipjudp wjte
{2, 3}-hwipwhwohyubpp, npnup puupupnd ku 4 Epupnipjudp wnweht uknp
hujuuwpulonqus {2, 3}-ghipunyunipniuubphie

O {2, 3}-cBepxToxnecTBax B o6paTumsix {2, 3}-anredpax
¢ OMHApHOM TPYIIIIOBOH omneparueit

B pabote xapakTepu3yiorcs odpaTumbie {2,3} -anre6psl ¢ GUHApHO rpyIi-
NOBO}i oOmepauueil M ¢ ypaBHOBEIICHHBIMH {2,3} -CBEpPXTOKIECTBAMH MEPBOTO

poaa muHbI 4.



