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A REMARK ON STRICT UNIFORM ALGEBRAS

M. . KARAKHANYAN", T. M. KHUDOYAN

Chair of Differential Equations, YSU

We study some properties of algebras of bounded continuous functions on a
completely regular space, these algebras being equipped with the strong
topology defined by of family multiplication operators (strict uniform algebras).
We prove an analog of a theorem due to M. Sheinberg for strict uniform algebras
(see [1-3]).
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Let © be a completely regular Hausdorff space, and C.(€2) be the algebra
of all bounded complex-valued continuous functions on 2. If we equip the space
C.(€9) with the topology induced by sup-norm || f ||w =sup{| f(x)|:x € Q}, then
we obtain a commutative Banach algebra C,((2) with the property that the
maximal ideals space of which is M @ = B2, where BQ is the Stone-Chekh

compactification for €2 . Recall that we call the remainder of €2 in the extension
P the space PO\ with the topology induced from SB€Q (see [4-5]). Let

A () be the set of all compacts O < B2\ Q and for O € £(£2) denote
Co = Co() ={f €C,(): [ =0},
where f is the Gelfand transform of f . Then C,(£2) is Banach algebra with
bounded approximative identity, and C,(£2) is C,-module. In the case when
0,0, £(£2) and O, cQ,, we have CQ1 (2)> CQ2 Q).
Note that the remainder B2\ 2 has a rather complicated structure, because,

for instance, in every point of the remainder the first axiom of countability fails to
hold. For Qe A(£2) denote Q, = p2\Q. All the Banach algebras C,(£2) are

proper closed ideals in the algebra C, (£2) for every Q € £'(£2).
Every ideal C,(£2) defines a family of seminorms {P,} .. ) on C,(£2),
0

with £,(f) =T, /]

x where T, :C,(£2) —> C,(£2) is the multiplicative operator
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T, f =gf . The topology on C,(£2), defined by this family of seminorms, we will
call the S, -topology, and we will denote by C(£2), the algebra C,(£2) endowed
0

with the S, -topology (cf. [6-9]). It is easy to see that f3, -topology is Hausdortf

topology.
We will say that a closed in the p,-topology subalgebra .4 of algebra

Cc) 5, is f3, -uniform, if it contains constants and separates the points of €2, (i.e.

forany x,x, € €, with x, #x, , there exists f €.4 suchthat f(x,)# f(x,)).

Note that in the case of completely regular space €2, the ideal C,(£2) can

turn out to be unusable, because of its triviality.
It should be noted here that f -topology of Buck on C,(£2) is the inductive

limit Lind(B,) of B, -topologies for O e A'(£2).

If Qe £(€2), then Q, = B2\ is locally-compact Hausdorff space and in
that case one can introduce a strong topology on C.(£2,) using the ideal C,(£2,),
which we will denote by C(£2,) .

Since QcQ,cp2, then the space of maximal ideals
Mcb(gg) =P (2y)=p(£2).

It can be easily seen, that the algebra C(£2) 5, is topologically isomorphic to

the algebra C(£2,), and hence the following assertions hold (cf. [2, 3]):

Theorem 1.
a) For any Qe L (Q) the algebra C() 5 18 fB, -complete locally convex
0

algebra;
b) Cy(£2,) = C,,(£2) is everywhere dense in C(£2), ;
0

¢) the space of all p,-continuous linear functionals on C(£2), 1is
0

isomorphic to the space M (£2,) of all finite regular measures on €2, .

Proposition 1.

a) The uniform topology and  f,-topology on C(U)=
={/€C,(2): f|p,=0} coincide for every openset U in €2, such that Uc Q,.

b) The linear space generated by {C,(U,)},.,, where {U.},_, is the subset of
the set of all open subsets in €, such that U, c Ul c €, is f,-dense in
C(€2y), = C(.Q)ﬁg .

Let 4 be a B, -uniform algebra on £2. Since the algebra C,(£2,) is comple-
te in the f3, -topology, then 4 is a closed subalgebra of the algebra C,(£2,) in the

sup-norm. Hence, we will denote the algebra 4 in the sup-norm of C,(£2,)) by 4, ,,.
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Suppose that the Banach space X is Ab,Q—bimodule. Recall that X is
By -complete 4, ,-bimodule, if from the fact that the net {f} in A4
B, -converges to f, it follows that for any xe X the nets {fx},., and {xf;}

iel
iel
converge to f,x and xf, respectively in the norm of the Banach space X .
The bimodular operation on X defines a bimodular operation on the dual
space X~ of X
(fe)X) =), (f)x)=0(fx)
forall fed, xeX, peX .

Note also that linear functional @ e X" is called weak" B, -continuous, if
from the f,-convergence in A of the net {/;},., to f; it follows that the net of

functionals {f,p}, , and {@f},, converge in the weak topology to f@ and ¢f
respectively.

As in ([2, 3]) we define the abelian group Z}J,Q (4,X") of all B, -continuous
in the weak topology differentiations D: 4 — X~ (i.e. if the net {f;},., in 4 By-
converges to f,, then the net of functionals {D(f;)},.; converges to D(f,) in the
weak™ topology of X'). We denote by Z!(4,X") the abelian group of all
continuous in the weak topology differentiations D: 40> X . For every
0ek(Q), Z,IBQ (4,X") is a subgroup of Z'(4,X").

Following B. Johnson [10] one calls a Banach algebra 4, , to be amenable,
if the group H'(4,X )=Z'(4,X")/B'(4,X") is trivial for every 4, ,-bimodule
X, where B'(4,X") is the abelian group, consisting of all inner differentiations
6,(a)=ap—@a. Analogously, the algebra A is called pS,-amenable, if the
group H;Q (4,X7)= Z}HQ (A,X*)/B;Q (4,X") is trivial for any S, -complete 4, ,-

bimodule X .
Clearly, if 4 is an amenable algebra, then 4 is S, -amenable (i.e. from

the condition H'(4,X)=0 for any 4, o-bimodule X it follows that
H,IBQ (4,X")=0 for any B, -complete 4, ,-bimodule X').

For the rest we need two f3, -complete 4, ,-bimodules.

Proposition 2. Let neM (.QQ) . Then there exists a measure v € M (.QQ)
and a function ge(,(£2,) such that u= gv, ie Ifd/l = ffgdv for all
S eC(82y) (=Cy(£2)).

Theorem 2. For any positive measure pe M(€2,) the Hilbert space
L’ (2,,u) is B, -complete Banach 4, , -bimodule.
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The proof can be done in the same manner as of the Lemma 4 in [3].

Let B, = BL(I*(9,, 1)) be the algebra of all bounded linear operators in
L*(Q,,u1), and J,, be the ideal of nuclear operators, which is Banach space in
the nuclear norm ||T||1 = tr|T| ([11]). J,, becomes Banach 4, ,-bimodule in the
case f-T-g=T,-T-T, forall f,ged,,and TeJ,,.

It is easy to see (c.f. [11]), that for any 7'eJ,, there exists a positive
function g € C;(£2,) such that Tg_1 Tedy.

Theorem 3. The Banach space J, , is 8, -complete 4, ,-bimodule.

It is well known, that the algebra B, is isometrically isomorphic, as a
Banach space, to the dual space JE o (c.£.[9]). This leads to the following result.

Theorem 4. The Banach 4, ,-bimodule B, is isometrically isomorphic
as a 4, ,-bimodule to the f,-complete in the weak” topology Banach Ay 0-
bimodule JE 0

Using Lemma 7 form [3], one can analogously prove the following

Proposition 3. Let 4 be f,-complete uniform algebra. If 4+ C(£2), ,
0

then H/I; (4,X")#0 for some B, -complete Banach 4, ,-bimodule X .
3 ,

From this Proposition we get the following result, which is the main result of
the paper.

Theorem 5. Let A be p,-uniform algebra. Then the following
conditions are equivalent:

a) 4=C(Q), ;

0
b) A is amenable algebra;
¢) 4 is B, -amenable algebra.

Now consider the situation, when €2 is completely regular Hausdorff space.
In this case, as has been mentioned above, one can introduce [ -topology in the

algebra C.(¢2) as the inductive limit Lindg(B,) of p,-topologies, where
0 e K(Q), which we will denote again by C(£2) 5~ Then by S -uniform algebra
A over 2 we will mean (as above) a closed in the f -topology subalgebra in the
algebra C(£2),, which contains constants and separates the points of (2.

It is easy to see, that S -topology on A is the inductive limit Lind( ﬂQ) of
B, -topologies of algebras A4, , which are [, -uniform subalgebras of algebras
0
C(€2); respectively.
0

In the light of the obtained results, we can formulate the following results for
completely regular Hausdorff space (2.
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Theorem 6.
a) The algebra C(£2), is B -complete locally convex algebra;

b) the space of all S -continuous linear functionals on C(£2), is isomorphic
to the space M (£2) of all finite regular measures on (2.

Theorem 7. Let A be [ -uniform subalgebra of C(.Q)ﬂ. Then the
following conditions are equivalent:

a) 4=C(02),;

b) A is amenable algebra.

In the case, when € is a compact, we get the Theorem of M. Sheinberg
from [1].

Remark. Note that null-set is a set of the form f7'(0) with f e C.(€2). Let
Z(£) is the set of all null-sets Ze O\Q. If Ze Z(Q2), then BQ\Z is
o -compact and locally-compact space and, in the light of Theorem 2.6 from [12],
in C,(BQ\Z) the strong topology coincides with the strong topology of Mackey
(i.e. strong space of Mackey). It follows that C(BQ\Z),; is C(£2) s, Hence all

the above idealogy works also for 8, -uniform algebras.

Note that in the algebra C.(£2) one can introduce also the S, -topology as
the inductive limit Lind(8,) of B, -topologies, where Z € Z (£2), which we will
denote by C(Q) B This B, -topology, as well as f -topology, is locally convex,

Hausdorff and g < g3, S"" For B, -uniform algebras over 2 the analogues of
Theorem 6 and Theorem 7 are true.
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U. b. Yupwjwiywb, S. U. unipnjub
“hunnnipjntt jphunn huwjuwuwpwswh hwipuhwohyubph Jepupkpyuyg

Uohmunuiipnid muniduwuhpynid &t npny hwnljnipynitinbp (hnghtt nkgnyjjup
(Quiuntwynp) wnwpwsmpul Jpu  npnoyus  uvwhdwbwiwl wiplnhwn
dntujghmitph dh  hwbpwhwpdh, npnd  dingqwés E puqduyunldub
oyjkpwnnpubph pwnwihpny wnwewgus juhun hwjwuwpwswth wnnunnghu:
Uyuwugnigymd £ U.  Thupkpgh  phopkdp juhun hwjuwuwpuwsuth
hwtpwhwohqubph hwdwp:

M. U. Kapaxansn, T. M. Xynosan.
3amMeyaHus 0 CTPOr0 PaBHOMEPHBIX ajlredpax

B cratbe M3ydaroTcsi HEKOTOpHIC CBOMCTBA ayireOpbl OrpaHUYCHHBIX HEMpe-
PBIBHBIX (DYHKIMH Ha BIOJHE PETYSIPHOM IIPOCTPAHCTBE, B KOTOPOW BBEICHA
CTporas paBHOMEpHas TOMOJIOTHS, TOPOXKICHHAs! CEMEWCTBOM OIIepaTOpPOB YMHOXKE-
nus. Jlokaszan ananor Teopembl M. [llelinOepra Juist CTpOro paBHOMEPHBIX anre0p.



