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STABILITY OF FREQUENCY DISTRIBUTION IN FRAME OF
NATURAL PARAMETRIZATION. I
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In this paper the stability problem for frequency distribution in frame of
natural parameterization is formulated and discussed. The case of finite number of
independent parameters is characterized. A corresponding stability problem is
investigated in terms of /,-metric.
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Introduction. The sequence { D, }: forms a frequency distribution (FD) if
p,>0,n>0 and ) p, =1.In the bioinformatics (see [1]):

p,=n"L(n), n>1, 1<p<+owo, limL(n)=LeR" =(0,+x),
n—»o0

()
ﬂzl‘i‘O(lj, n —> +00,
L(n-1) n
Py P :
Dp > Puits > "= starting from some n, >0. )
Pun P2

Assume that in (1) p €(2,+©) andin (2) n,=0.
The unknown FDs are approximated by various parametric distributions
{ P, (5)}: with the vector ¢ of parameters, that are referred to also as FDs.

Let ¢=c, =(¢,....c,) €2, m<+oo, and K < 2 be a bounded, closed,

o0

convex set, and u be some metric in the set {{ Pa(@)}, G, € .Q} :

We say that m-parametric FD { p,(, )};0 with independent parameters is

4 -stable (with respect to the parameters) on K , if uniformly on ¢,,c¢, € K
5 1iar'r\l—m#({p”}:)’{p’,’}:)):() ) 3)
The parameters are independent, if not one of these is a function of others. Here

m

|C,—C =20 e =], €, =(ClaeesCp)sCoy = (ClyernsCh)s Py = Du(C)s P =D,(C)), n20.
in1
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Similarly,{ p,(c, )}: is u-stable, if (3) holds for any K .

Stability Problem. Introduce the metric x4 and find conditions for
p-stability of FD {p,(E,)}, -

In this paper the stability problem for FD { pn};0 in bioinformatics is

formulated in frame of natural parameterization (NP) in case of finite number of
independent parameters and is solved in terms of /, -metric, p>0.

Natural Parameterization (NP). Due to [2], { P, };0 is a FD, iff
-1
p.=polle,n>1¢,>0, pﬁ[“ZH%j > 4)
k=1 n=l k=1
SITe <+o. (5)

n=l k=1
Then ¢, =(p,/ p,_,), n=1. The coefficients &,¢&,,... are treated as parameters of

{p,}o in its NP (4)~(5). Let T={1,2,...}=01Tj, Ty ={k; ke + 1k =14,
P

j=1,m, where 1= k <k, <..<k, <+o(=k,, ), and any parameter in the set
G; ={£k 'k eTJ} is uniquely determined by the vector (c¢,....c;). Here ¢; =¢;,

i :rj. The parameters c,,...,c,, are independent. This is a characterization of

m

m -parametric FD {Pn }: in its NP (4)(5).

So, {Pn}:={Pn(5m)}: and gkzhk(cl,...,cj) for given j, j=1,m, and

& €G;. ltisclear that h (c,....c;)=c; for j =1,m . Assume that:

a) h for k#k;,j=1,m, isincreased by each parameter separately;

b) partial derivatives(0h, /Oc;) for i =rj exist and are uniformly bounded
with respectto £ >1.

Now recall the form of [ -metric: /, ({pn}: ,{p;}:) =>1p,— .|, and

nzo

formulate in this case the Stability Problem: for admissible p >0 prove the
1, -stability of FD {p,} .

Theorem 1. In our case the FD {pn}: is /,,, -stable.

For given K (2 and j=1,m denote

g_/.:{infcj:EmeK}, Z’j:{supcj:EmeK}. (6)

It is easy to see that for given j, j=1,m, thereis ¢, €K with ¢; =c,. Indeed, if
for all ¢, e K the components ¢; are identical, then the statement is obvious.

Assume that there are ¢, ,c

m

eK with ¢; <cj for given j, j=1,m. Due to the
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convexity of K, for any ce€[c j,c}] there is ¢, € K such that c}f =c. In this case,

as it follows from the definition of ¢, for given j, j=1,m, there is a sequence

{E(k)} €K such that lim ¢! =¢,. Extracting the convergent subsequence
"o ko>t J

{E,E,kf)}l €K from {E,(nk) }1 , the statement is proved due to the closeness of K .

Similarly, for given j, j=1,m, thereis ¢, e K with ¢; =¢;.
Let us show that in (6)
¢<¢g<..<c, and ¢ <c, <..<C,. (7
In order to prove the second chain of inequalities (7) assume the opposite,
i.e. there are indices i and j, i< j, such that ¢, >c,. There are ¢,,c,, € K with

¢;=¢; and ¢} =c,. Because of (2) we have & =(p,/p, ) <(p,,/p,) for s>1,
which implies that ¢; <c; and ¢/ <c; in ¢, and ¢, respectively. So, we get that in
¢,, the component ¢, exceeds the component ¢ =¢; in ¢,, . This contradicts to (6).
The first chain of inequalities (7) is proved similarly.
Now, given K < (2 introduce a bounded, closed, convex set K "< O that
contains K , satisfies the conditions (6), where K is replaced by K~ and
¢ .=(qrmc,)eK, € =(C,..c,)eK . (8)
For K" — Q2 denote: p(E;) is the parameter p in the presentation (1) of
{p (E’”)}o ’
Theorem 1 follows from the next
Theorem 2. In our case the FD {pn}: is [, -stable on K" with any
p>(/ p(,)). ©)
Indeed, the /,-stability on K " implies the / , -stability on K, which generates
K" with the same p (see (9)). So, in particular, { P, }: is [, -stable onany K < (2.
Auxiliary Statements. Rewrite (4) in the form
g(c,)

g,@C,)=1le&. n>0, gEc,)=
k=1

P,(C, , n20, g(c,)>0, (10)

1 :1+Zﬁgk [ﬁzl}. (11)

Do (Em) n=1 k=1

Let K" be generated by K . Since ¢,. =(q,....c, )€K, €, =(C,....C,) €K,
where ¢;and ¢, for —1,m are defined in (6) and ¢<6<..<¢,,
¢ <¢, <...<c, (see(7)), therefore, due to condition (a),

g, (@)= max g, (¢, ) forall n>0, (12)

€,(¢,) = min g(C,)). (13)
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Lemmal. The function g(c,) is continuous on K "
Proof. The conditions (a) and (b) on K~ imply the existence of constant

Ae[l,+x) (depending only on K') such that for any jzl,_m, keT; and
¢ ek

S6hk(cl,...,cj)
oc;

1

With the help of (14) and Mean Value Theorem we obtain: for given
j=Lm, keT, and any ¢,,CpneK

)=y (c{,...,c'j)\s

<4, i=1;. (14)

|5 —5,;|:

(15)
<Z‘h (cl’ Cl’cHl’ C ) h (Cl7 Ci15Ciseee5C; )‘<AZ|C -G |<A|C

where & =l (c),....¢;), & =h(c],....c;). For given j=1,m and keT, denote

i=1 sel;

j-1 k
A (El,...E/)z[HHhS(EI,...,Ei } [1%(c,....c;), and continue the estimations
s=k;
using (15)

r’I Hs—nens

s=1 s=i=1

k k
~[a|=2

| ”k(cp

i)

s=i+1

Z| £l < ’k(cl’—’fA|m_~;n|k.
g

Thus, due to (11), forany k>1 on K~ we have

- -, A o
|gk(cm)_gk(cm) :gkgk(cm (16)
Since (1) holds with p e (2,+0), therefore,
B=Ykg,(C,)<+o. (17)

k=1

Taking into account (11), (16) and (17), for ¢,,¢, € K " we obtain an inequality

IZkgk(c )=D|¢, —2,], (18)

|g(c) g(c, )| gk(cm) 8¢ ))

where the constant D =(A4B/¢)e R" depends only on K"

With the help of inequality (18) the continuity of g(¢,) on K " is proved.

During the proof of Lemma 1 the following statement was established (see
(16)).

Lemma 2. The functions g(c,,) for all n>0 are continuous on K "

Stability Criterion. Let the FD {p, (¢, )};O , where ¢, =(c,....c,,))€£2,is a

vector of independent parameters that satisfies conditions (1), (2), and has the form
(10). In [3] under the following additional conditions on K € £2:
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1. Thereis ¢, € K suchthat g, (¢))= max g, (c,) forall n>0;

2. g(c,,) is continuous with respect to ¢,, € K,
it was established

Criterion. FD {pn (S, )}w

, is [, -stable on K, iff uniformly on ¢,,,¢,, € K

lim 0| g,(c,)—g,C, )| =0 separately for n>0. (19)

P
‘Cm —Cm

Here p > (l/p(Enj)) and p(¢,) is the parameter pin (1) for {pn (E,;)}: .

In our case, when g,(c,), n=1, and g(¢,) have the form (11), the
Condition 1 is fulfilled on K" with &} =¢, , the fulfillment Condition 2 on K"
follows from Lemma 1. Since, due to Lemma 2, g,(c,,) for n>1 are continuous

on K°, therefore, they are uniformly continuous on K", which implies (19) on K~
in our case. Thus, applying the Criterion in our case, one obtains Theorem 2.

Received 10.01.2011

REFERENCES

1. Astola J., Danidlian E. Frequency Distributions in Biomolecular Systems and Growing
Networks. Tampere: TICSP, Series 31, 2006.

2. Danidlian E.A., Avagyan G.P. Doklady NAN Armenii, 2008, v. 4, Ne 4, p. 17-23 (in Russian).

3. Jakovlev S.P. Modelirovanie, Optimizatsia, Upravlenie. Yer.: SEUA, 2008, v. 11, Ne 1, p. 139-
144 (in Russian).



