BULLETIN OF STOMATOLOGY AND MAXILLO-FACIAL SURGERY OF Vol. 18, No. 1

PROSTHODONTICS

IMPLANT SUPPORTED FULL-ARCH ZIRCONIA-BASED RESTORATIONS MANUFACTURED (CAD/CAM) FROM MONOLITHIC ZIRCONIUM DIOXIDE: 6-YEAR EIGHT-YEAR RESULTS PROSPECTIVE CLINICAL STUDY

Hakobyan Gagik DMSc, PhD ^{1*}, Mikayelyan Mikayel ², Azizyan Ashot ², Injigulyan Aresen ², Andreasyan Suzanan ², Vardanyan Arman ²

- 1. Department of Oral and Maxillofacial Surgery, Yerevan State Medical University, Armenia
- 2. Doctor Art Dent, Yerevan, Armenia

*Corresponding author: Gagik Hakobyan, Department of Oral and Maxillofacial Surgery, Yerevan State Medical University, M. Heratsi, Yerevan, Armenia; e-mail: <u>prom_hg@yahoo.com</u>

Received: Aug. 26, 2022, Published: Nov. 2, 2022

DOI 10.58240/1829006X-2022.18.1-56

Abstract

Purpose: To evaluate the survival of implants, the success of prosthetics of implant-supported reconstructions based on monolithic zirconium dioxide, functioning up to 5 years.

Materials and Methods: In this study 87 patients were participated referred in need of full arch implant-supported reconstructions in maxilla, mandible or both. All patients underwent a thorough clinical examination according to a generally accepted scheme. After the diagnostic workup was completed, a treatment plan was developed by using a cone beam computed tomography and software system. Using surgical guides 46 patients' dental implants were installed. Postoperative clinical and radiological monitoring was regularly conducted, and criteria for thesuccess of implantation and success of prosthetics of implant-supported reconstructions were evaluated 642 implants (6 to 8 dental implants in the edentulous arches) were installed for monolithic zirconia full arch reconstructions. Prosthodontic treatment was performed 3 to 6 months after implants healing time. Digitaltechnologies were included in the work flow with the laboratory scanning of the master casts andCAD/CAM manufacturing software. The monolithic zirconia block was milled using CAD/CAM software according to the manufacturer's specifications and then a monolithic zirconia restoration sintering. Outcome measures were: Implant success; prosthesis success; complications and marginal bone levels.

Results: No intra-operative or immediate post-operative complications were noted. During a 3-year observation fracture of the monolithic zirconia or any other mechanical complications of prostheses, no registered, screws fractured in 3 prosthesis was observed over the 3-year study period.

Conclusion: Our studies have shown good aesthetic, functional and mechanical properties of monolithic zirconia restorations and fewer complications.

Keywords: Monolithic zirconium dioxide; Computer assisted manufacturing (CAD/CAM)

Introduction

The traditional method of manufacturing crowns and other orthopedic structures is gradually inferior to digital. The era of Computer-Assisted Design/Computer Assisted Manufacturing (CAD/ CAM) technology has brought a variety of digital prosthesis manufacturing techniques. For this purpose, scanners are used that make it possible to obtain a digital impression of the oral cavity, programs that model future orthopedic structures, milling laboratory that produce them, and special materials for manufacturing according to such algorithms. Now a day's implant-supported full-arch restorations show good success results ^{1, 2}.

For such restorations, various materials were used, such as metalacrylic and metal-ceramic. However, the complication of metalacrylic and metal-ceramic restorations associated with fractured or chipping prompted the search for other materials ^{3, 4}. There is a lot of research where it was shown good mechanical, biological, and chemical properties of zirconium dioxide ^{4,5}. Today, zirconia dental restorations CAD/CAM technologies are the most modern way to restore teeth. Restorations are obtained as accurate, safe and natural as possible. Zirconium oxide has gained popularity as reducing material also in oral implantology due to its biocompatibility and aesthetic appearance ⁶.

A new branch of research was the use of monolithic zirconium for the manufacture of implant restoration. However, there are publications where reported veneering ceramic chipping the zirconium substructure. CAD/CAM manufactured, full arch monolithic zirconium oxide implant restorations provide available alternative for rehabilitating edentulous patients ^{8, 9}. Use of the monolithic zirconium substructure reduces avoids chips ^{3, 10}.

The compressive strength of zirconia is superior to tensile strength. Therefore, this material is not recommended for the use of cantilever prostheses in order to prevent its fracture. CAD/CAM technologies have advanced significantly and this has allowed laboratories to make monolithic restorations, avoiding the need for subsequent layering of feldspar ceramics ^{11, 12}.

The manufacturing process of zirconium fixed bridge structures is carried out under the control of a computer program. Implant impression is made; a model is made that is scanned using a 3D scanner, processed by a special program (CAD), which models the image of the future. Implant supported restorations and transfers it to milling equipment machine (CAM), which automatically cuts the ultra precise construction of the future restorations from a solid block of zirconium dioxide. Further, by firing in a special furnace, the frame is given the strength of the metal. Sintering occurs at a temperature of about one and a half thousand degrees it is thanks to it that zircon gets its phenomenal strength. The sintering process guarantees the accuracy of the landing frame up to 20 microns.

The final touch of restorations manufacturing, is the enamel coloring in the corresponding shade, grinding and the restoration acquires a natural shine. Thanks to this technology, the finished restorations perfectly fit the patient's implants, taking into account their smallest individual characteristics. There is evidence of short-term positive results; however, the amount of research needed remains insufficient to draw final and reasoned conclusions.

The purpose of the study was to evaluate the survival of implants, the success of prosthetics of implantsupported reconstructio based on monolithic zirconium dioxide, functioning up to 3 years.

Patients and Methods

The 42 patients (19 females and 23 males, range: 38-64) were participated in this study referred in need of full arch implant supported reconstructions in maxilla, mandible or both. The 21 of these patients required maxillary and mandibular full arch reconstruction, and 7 involved only the maxillary arch. In 4 patient's natural teeth and a complete denture. A total of 53 edentulous arches were restored: 29 maxillary and 24 mandibular arches. All patients underwent a thorough clinical examination according to a generally accepted scheme. After the diagnostic workup was completed, a treatment plan was developed by using a cone beam computed tomography and software system. Dental implants of 21 patients were installed the edentulous arches using surgical guides. Postoperative therapy included antibacterial, anti-inflammatory drugs.

Postoperative clinical and radiological monitoring was regularly conducted, and criteria for the success of implantation and success of prosthetics of implant-supported reconstructions were evaluated.

The 376 implants (6 to 8 dental implants in the edentulous arches) were installed for monolithic zirconia full arch reconstructions. Prior to the start of the prosthetics phase, patients were temporary full dentures. The prosthetic indication was made according to each patient clinical condition in order to achieve the highest function and esthetic.

Prosthodontic treatment was performed 3 to 6 months after implants healing time. The impression procedure is initiated 2 weeks after the implant uncover. The prosthetic phases started with impression open tray or optical impression with an intraoral scanner.

The open tray impression is made using polyvinyl siloxane impression materials. All healing abutments were removed and open tray impression copings were inserted. Impression copings were splinted with pattern resin. Vinyl polysiloxane material was used for bite registration. After casting the master, the received master casts were scanned. Files obtained as a result of

scanning were imported into prosthetic CAD, where the virtual waxing of the restoration was carried out. All arch restorations were designed without veneering porcelain. The virtual waxing of the restoration transformed temporary acrylic prosthesis and after trying to ensure adequate fit, function and esthetics were temporarily fixed on the implants for 1 to 2 weeks.

After some minor adjustments, the restoration was milled in a monolithic zirconia block and were sintered in the oven. The final full arch prostheses were clinically verified in the oral cavity and after occlusal adjustments last working step was enamel coloring in the corresponding shade and grinding. After the approval and consent of the patients with the shape and shade of the final restorations, they were fixed. Of the 54 full arches, 26 were implant supported screw-retained, and 28 full arches were implant supported cement-retained. Occlusal screws were torqued following manufacturer's instructions. Cement-retained fixed prostheses were cemented with temporary cement. Prior to the final cementation, the inner surface of each crown was treated according to the manufacturers' recommendations.

Results

No postoperative complications have been reported. The 36-follow-up period evaluation of CT scan revealed implants demonstrated to integrate normally. All of the patients presented with healthy soft tissue. Marginal bone loss data were recorded, mean Marginal Bone Loss (MBL) was 1.2 ± 0.25 mm. A total of 8 implant failures were recorded. After 3 implants show survival rates (97.6%). Outcome measures were: prosthesis success; implant success; complications and marginal bone levels. Postsurgical change in marginal bone levels was assess by digital X-ray were taken immediately (base line for comparison) and 1, 3 years post operatively. During a 5-year observation fracture of the monolithic zirconium dioxide or any other mechanical complications of prostheses, no registered, screws fractured in 3 prosthesis was observed over the 3year study period. Patients were satisfied with the aesthetic and functional outcome of the treatment. The results showed that implant treatment is effective to improve patients' masticatory efficiency. This case reports presents a combination of surgical and prosthetic solutions applied to a case of oral implant rehabilitation in patients with edentulism maxillae and partial edentulism in mandible.

Case Presentation

A 53 years old female patient, presented to clinic with edentulous maxilla and partial edentulous mandibula. Medical examination revealed that the patient presented good general health. The patient was subjected to radiological examination with Cone Beam Computed Tomography (CBCT). A treatment plan was defined that included: installation of 8 dental implants in the maxilla and 5 dental implants in mandibula. According to the protocol, the implants sites were prepared and implants were placed. The loading of the implants was delayed, the patient was provided with a removable complete denture. The prosthetic phases started after 5 months healing period (Figure 1).

Figure 1: CT scan 5 month after surgery

Impression procedure started 2 weeks after opening the implant. The first impression from implant transfers was obtained using the open tray method with soft silicone. The laboratory made the 1st model, the resin pattern in implant transfers and sectioned. In the mouth, the resin pattern section was put together and then obtains the final impression. Vinyl polysiloxane material was used for bite registration. Master model was made by the laboratory with gypsum type IV and then, received master cast were scanned by CAD (3 Shape Dental System, Dentsply Sirona Japan). Files obtained as a result of scanning were imported into prosthetic CAD. Digital wax-up was used and a prototype of the restoration where designed (Figure 2).

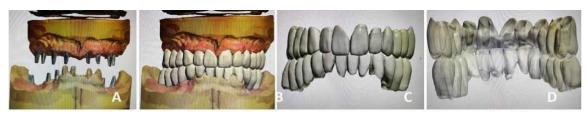


Figure 2: Implants scan model (A). Computer-aided design of restorations (B-D)

Milling machine was used to mill the prototype in temporary acrylic prosthesis which was then tested in the mouth and were temporarily fixed on the implants and teeth for 2 weeks. With the approved design prototype, a zirconia block (Cerconht, Dentsply Sirona K.K.) was machined with a CAM (Cercon brain, Dentsply Sirona K.K.). After zirconia sintering, the restoration was checked in the model and delivery to the clinic. Provisional restorations were removed, zirconia restorations clinically verified in the oral cavity and after some minor adjustments occlusion and after patient approval the restorations were glazed. Zirconia restorations were cemented with temporary cement (Figure 3).

Figure 3: Intraoral view of abutments upper jaw (A), and lower jaw (B) before prosthetic reconstruction. Final intraoral frontal view after prosthetic rehabilitation with non-removable monolithic zirconia restorations (C, D)

Discussion

Zirconium dioxide was introduced to dentistry in the 1970s because of its superior mechanical properties, and the favorable response to soft tissues ^{13, 14}. Nowadays itrs one of the most used material in restorative dentistry and is a more esthetical material.

Although zirconia frameworks veneered glass ceramic has been successful aesthetics, their most common disadvantage is chipping of the veneering ceramic ¹⁵. There are clinical studies showing the effectiveness for monolithic zirconia compared with zirconia frames with ceramic veneering ^{16, 17}. Chipping of veneering ceramics are a frequent complication of zirconia-based restorations on implants ^{18, 19}. These problems were solved with the use of CAD/CAM technology milling in one block monolithic zirconia for a full arch over implants ¹⁷. In presented clinical study using digital techniques, maxillary and mandibular full arch were restored with CAD/CAM monolithic zirconia implantsupported full-arch restorations. The results of study showed good mechanical properties, good biocompatibility, did not present any complications during the observation period. High transparency of zirconium-dioxide allows for monolithic restorations without the need for veneers and the risk of chipping. Most authors are of the opinion that this treatment option should be treated with caution. Compared to other dental ceramics, zirconium is considered an opaque material and the transparency of zirconia depends on the thickness of zirconia. Reducing the thicknessof zirconia may increase transparency to restorations ^{17, 20}.

In this study, based on the clinical situation zirconium prostheses had a thickness of 0.8 mm to 1.5 mm and showed high esthetic and resistance to fractures. When choosing the method of fixing the restoration, must be considered that screw-retained implant restorations provide better retrievability and cement-retained implant restorations provide improved aesthetics and increased chances of achieving ²¹⁻²³. In this study we did not give preference to screw-retained or cement-retained fixation methods; the fixation method was chosen based on the clinical situation. Differences between cement and screw-retained restorations are not statistically significant.

Conclusion

The results confirm that fabrication of the monolithic zirconia restorations reduces breakage possibilities and avoids chipping. Our studies have shown good aesthetic and mechanical properties of monolithic zirconia restorations and fewer complications. This method is for professionals with extensive experience, as it requires long training and prior work experience.

REFERENCES

- 1. Rojas-Vizcaya F. Full zirconia fixed detachable implant-retained restorations manufactured from monolithic zirconia: Clinical report after two years in service. J Prosthodont. 2011;20(7):570-6.
- 2. Larsson C, Von Steyern PV. Implant-supported full-arch zirconia-based mandibular fixed dental prostheses. Eight-year results from a clinical pilot study. Acta Odontol Scand. 2013;71(5):1118-22.
- 3. Sadid-Zadeh R, Liu PR, Aponte-Wesson R, O'Neal SJ. Maxillary cement retained implant supported monolithic zirconia prosthesis in a full mouth rehabilitation: A clinical report. J Adv Prosthodont. 2013;5(2):209-17.

- 4. Limmer B., Sanders A.E., Reside G., Cooper L.F. Complications and patientcentered outcomes with an implantsupported monolithic zirconia fixed dental prosthesis: 1-year results. J. Prosthodont. 2014;23(4):26775.
- 5. Oliva J., Oliva X., Oliva J.D. All-on-three delayed implant loading concept for the completely edentulous maxilla and mandible: A retrospective 5-year follow-up study. Int J Oral Maxillofac Implants. 2012;27(6):158492.
- 6. Kollar A., Huber S., Mericske E., Mericske-Stern R. Zirconia for teeth and implants: A case series. Int J Periodontics Restor Dent. 2008;28(5):479-87.
- 7. Papaspyridakos P., Lal K. Complete arch implant rehabilitation using subtractive rapid prototyping and porcelain fused to zirconia prosthesis: A clinical report. J Prosthet Dent. 2008;100(3):165-72.
- 8. Guess P.C., Att W., Strub J.R. Zirconia in fixed implant Dental Practice. 2009;7:170-4.
- 9. Lazetera A. Extreme class II full arch zirconia Implant Bridge. AustralasianDental Practice. 2009;7:170-4.
- 10. Kanat B., Comlekoglu E.M., Dundar-3omlekoglu M., Hakan Sen B., Ozcan M., Ali Gungor M.E. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs. J. Prosthodont. 2014;23(6):445-55.
- 11. Helvey G.A. Zirconia and Computer-aided Design/Computer-aided Manufacturing (CAD/CAM) Dentistry. Inside Dent. 2008;4(4).
- 12. Koenig V., Wulfman C.P., Derbanne M.A., Dupont N.M., Tang M.L., Seidel L., et al. Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses. Contemp Clin Trials Commun. 2016;4(15):25-32.
- 13. Zarone F., Russo S., Sorrentino R. From porcelain-fused to-metal to zirconia: clinical and experimental considerations. Dent Mater. 2011;27(1):83-96.
- 14. Cranin A.N., Schnitman P.A., Rabkin S.M., Onesto E.J. Alumina and zirconia coated vitallium oral endosteal implants in beagles. J Biomed Mater Res. 1975;9(4):257-62.
- 15. Rinke S., Gersdorff N., Lange K., Roediger M. Prospective evaluation of zirconia posterior fixed partial dentures: 7-year clinical results. Int J Prosthodont. 2013;26(2):164-71.
- 16. Venezia P., Torsello F., Cavalcanti R., Dómoto S. Retrospective analysis of 26 complete-arch implant-supported monolithic zirconia prysteses with feldspathic porcelain veneering limited to the facial surface. J Prosthet Dent. 2015;114(4):506-12.
- 17. Carames J., Tovar Suinaga L., Yu Y.C., Perez A., Kang M. Clinical advantages and limitations of monolithic zirconia restorations full arch implant supported reconstruction: Case series. Int J Dent. 2015;1-7.
- 18. Cheng C.W., Chien C.H., Chen C.J., Papaspyridakos P. Complete-mouth implant rehabilitation with modified monolithic zirconia implant supported fixed dental prostheses and an immediate-loading protocol: A clinical report. J Prosthet Dent. 2013:109(6):347-52.
- 19. Nelson R.F., Sailer I., Zhang Y., Coelho P.G., Guess P.C., Zembic A., et al. Performance of zirconia for dental healthcare. Materials (Basel). 2010;3(2):863-96.
- 20. Wang F., Takahashi H., Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthe Dent. 2013;110(1):14-20.
- 21. Sherif S., Susarla H.K., Kapos T., Munoz D., Chang B.M., Wright. A systematic review of screw-versus cementretained implant-supported fixed restorations. J Prosthodont. 2014;23(1):1-9.
- 22. Nissan J., Narobai D., Gross O., Ghelfan O., Chaushu G. Long-term outcome of cemented versus screw-retained implant-supported partial restorations. Int J Oral Maxillofac Implants. 2011;26(5):1102-7.
- 23. Sailer I., Мыlemann S., Zwahlen M., Hдmmerle CHF, Schneider D. Cemented and screw-retained implant reconstructions: A systematic review of the survival and complication rates. Clin Oral Implants Res. 2012;23(6):163-201.

CAD/CAM ՀԱՄԱԿԱՐԳՈՎ ՊԱՑՐԱՍՑՎԱԾ ՄՈՆՈԼԻՑ ՑԻՐԿՈՆԻ ԵՐԿՕՔՍԻԴԻՑ ԱՄԲՈՂՋԱԿԱՆ ՕՐԹՈՊԵԴԻԿ ԿՈՆՍՑՐՈԻԿՑԻԱՆԵՐ՝ ՀԵՆՎԱԾ ԻՄՊԼԱՆՑՆԵՐԻ ՎՐԱ: 6-ԱՄՅԱ ՀԵՌԱՆԿԱՐԱՅԻՆ ԿԼԻՆԻԿԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅԱՆ ԱՐԴՅՈՒՆՔՆԵՐ

Հակոբյան Գագիկ ¹, Միքայելյան Միքայել ², Ազիզյան Աշոտ ², Ինջիղուլյան Արեսեն ², Անդրեասյան Սյուզանա ², Վարդանյան Արման ²

- 1. պրոֆեսոր, Երևանի պետական բժշկական համալսարանի վիրաբուժական ստոմատոլոգիայի և դիմածնոտային վիրաբուժության ամբիոնի վարիչ, Հայաստան
- 2. բժիշկ, Արտ Դենտ, Երևան, Հայաստան

Ամփոփում

Նպատակը։ Գնահատել իմպլանտների վրա հենված մոնոլիտ ցիրկոնի երկօքսիդից պատրաստված օրթոպեդիկ պրոթեզավորման արդյունավետությունը, որոնք գործում են մինչև 6 տարի ժանակահատվածում։

Նյութեր և մեթոդներ։ Այս հետազոտությունում ընդգրկվել են վերին կամ ստորին ծնոտների մասնակի կամ լրիվ ադենտիայով 87 հիվանդներ, որոնց օրթոպեդիկ վերականգնումը իրականացվել է իմպլանտների վրա հենված մոնոլիտ ցիրկոնի երկօքսիդից պատրաստված օրթոպեդիկ կոնստրուկցիաներով։ Բոլոր հիվանդները ենթարկվել են մանրակրկիտ կլինիկական և ճառագայթային հետազոտության ըստ ընդհանուր ընդունված սխեմայի։ Համալիր հետազոտությունից հետո բուժման պլանը կազմվել է օգտագործելով ճառագայթային համակարգչային շերտագրության ծրագրային համակարգ։ Վիրաբուժական շաբլոններ կիրառվել են 46 հիվանդների մոտ, կիրառվել են 642 իմպլանտներ (6-ից 8 իմպլանտներ անատամ ծնոտներում) իմպլանտների ապաքինման ժամանակից 3-6 ամիս հետո նրանց վրա տեղադրվել են ամբողջական մոնոլիտ ցիրկոնի երկօքսիդից պատրաստված օրթոպեդիկ կոնստրուկցիաներ։ Թվային տեխնոլոգիաները կիրառվել են աշխատանքային մոդելները լաբորատոր սկանավորումով և CAD/CAM համակարգի ծրագրումով։ Օրթոպեդիկ կոնստրուկցիան պատրաստեվել է մոնոլիտ ցիրկոնի բլոկից CAD/CAM-ի միջոցով՝ ըստ արտադրողի բնութագրերի։ Պարբերաբար անցկացվել են հետվիրահատական կլինիկական և ճառագայթային մոնիտորինգ և գնահատվել են իմպլանտացիայի հաջողությունը և իմպլանտի վրա հիմնված օրթոպեդիկ կոնստրուկցիաների հաջողությունը, (իմպլանտի հաջողությունը, պրոթեզի հաջողությունը, բարդությունները և հարիմպլանտային եզրային ոսկրի ռեզորբցիայի մակարդակը)։

Արդյունքներ։ Ներվիրահատական կամ անմիջական հետվիրահատական բարդություններ չեն արձանագվել։ Վեցամյան դիտարկման արդյունքում մոնոլիտ ցիրկոնի կոտրվածք կամ որևէ այլ մեխանիկական բարդություն չի գրանցվել, երեք պտուտակների կոտրվածք է գրանցվել ուսումնասիրության ընթացքում։

Եզրակացություն։ Մեր ուսումնասիրությունները ցույց են տվել լավ գեղագիտական, ֆունկցիոնալ և մեխանիկական հատկություններ CAD/CAM համակարգով պատրաստված մոնոլիտ ցիրկոնե օրթոպեդիկ կոնստրուկցիաների կիրառման արդյունքում և շատ քիչ բարդություններ։

САD/САМ МОНОЛИТНЫЕ ОРТОПЕДИЧЕСКИЕ КОНСТРУКЦИИ ИЗ ДИОКСИДА ЦИРКОНИЯ С ОПОРОЙ НА ИМПЛАНТАТЫ. РЕЗУЛЬТАТЫ 6-ЛЕТНЕГО ПРОСПЕКТИВНОГО КЛИНИЧЕСКОГО ИССЛЕДОВАНИЯ

Акопян Гагик ¹, Микаел Микаелян ², Азизян Ашот ², Арсен Инджигулян ², Андреасян Сузанан ², Арман Варданян ²

- 1. Профессор, заведующий кафедрой хирургической стоматологии и челюстно-лицевой хирургии Ереванского государственного медицинского университета, Армения,
- 2. Доктор, Арт Дент, Ереван, Армения

Резюме

Цель: Оценить эффективность монолитных ортопедических протезов из диоксида циркония с опорой на имплантаты, функционирующих до 6 лет.

Материалы и методы: В исследование включено 87 пациентов с частичной или полной адентией верхней или нижней челюсти, у которых ортопедическая реставрация выполнена монолитными ортопедическими конструкциями из диоксида циркония с опорой на имплантаты. Всем больным проведено тщательное клинико-рентгенологическое обследование по общепринятой схеме, после комплексного обследования был составлен план лечения с использованием программного комплекса рентгенологической компьютерной томографии. Хирургические шаблоны использовали у 46 пациентов, использовали 642 имплантата (от 6 до 8 имплантатов на беззубых челюстях), а через 3-6 месяцев после приживления имплантатов на них устанавливали монолитные ортопедические конструкции из диоксида циркония. Цифровые технологии были применены к рабочим моделям с лабораторным сканированием и системным программным обеспечением CAD/CAM. Ортопедические конструкции были изготовлены из монолитного циркониевого блока с использованием CAD/CAM в соответствии с требованиями производителя. Послеоперационный клинико-рентгенологический контроль проводился регулярно, оценивали успешность имплантации и ортопедических конструкций, осложнения, оценивали уровень периимплантатной резорбции кости.

Полученные результаты: Интраоперационных и ближайших послеоперационных осложнений зарегистрировано не было. Через шесть лет наблюдения не было переломов монолитного каркаса из диоксида циркония или каких-либо других механических осложнений, в ходе исследования было зарегистрировано три перелома винтов.

Вывод: Наши исследования показали хорошие эстетические, функциональные и механические свойства CAD/CAM монолитного диоксида циркония в результате использования ортопедических конструкций и очень малого количества осложнений.

Ключевые слова: Монолитный диоксид циркония; Автоматизированное производство (CAD/CAM)