

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024), Issue 4 p. 84-90

DOI: https://doi.org/10.56936/18290825-4.v18.2024-84

RISING INCIDENCE OF MUCORMYCOSIS IS A NEW PANIC CHALLENGE IN SOUTHWEST OF IRAN DURING COVID-19 PANDEMIC:

ASSOCIATED RISK FACTORS AND PREVENTIVE MEASURES

KARDOONI M.¹, NIKAKHLAGH S.¹, SALMANZADEH S.², MIRMOMENI G.³, SADEGH ZADEH DIMAN S.¹*

Department of Otolaryngology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
 Department of Infectious Diseases, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
 Hearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Received 28.02.2024; Accepted for printing 10.11.2024

ABSTRACT

Background: The increase in mucormycosis after COVID-19 pandemic has become a serious medical concern, leading to widespread complications and deaths worldwide. It is essential to identify the factors affecting mortality and associated complications. Therefore, the aim of this study is to investigate the rise in mucormycosis incidence as an important challenge in southwest Iran during the COVID-19 pandemic.

Material and methods: In this study, demographic and clinical information of COVID-19 patients, including age, gender, underlying medical conditions, etc., were extracted from patients' files. The analyzes 48 mucormycosis patients and 52 controls, utilizing measures of central tendency, dispersion, frequency, and odds ratios.

Results: Our study revealed that the distribution of age, gender, and history of organ transplantation in the case and control groups was similar. Most mucormycosis patients were in the age group of 41 to 60 years (45.3%). Most study participants were males (28 individuals, 58.3%). The most prevalent underlying comorbidities among patients with mucormycosis were diabetes (93.8%) and hypertension (41.7%). Twenty-four individuals (50%) had a history of steroid use. In the control group, the most common underlying conditions were hypertension (32%), hyperlipidemia (21%), and diabetes (19%). Only 3 individuals (5.7%) in the control group had a history of steroid use, and an equal number (5.7%) had a history of other immunosuppressive drug use. Risk factors associated with an increased chance of mucormycosis included diabetes compared to non-diabetic individuals, with an odds ratio of 63, 95% confidence interval of 16.28-244; corticosteroid treatment with an odds ratio of 16.3, 95% confidence interval of 4.47-59.67; and treatment with other immunosuppressive drugs with an odds ratio of 6.06, 95% confidence interval of 1.60-22.89.

Conclusion: Diabetes, corticosteroids, and immunosuppression increase the risk of COVID-19-associated mucormycosis risk. Avoiding corticosteroids in mild cases and closely monitoring blood sugar level can help to reduce of COVID-19-associated mucormycosis.

Keywords: mucormycosis, COVID-19, incidence

CITE THIS ARTICLE AS:

Kardooni M., Nikakhlagh S., Salmanzadeh S. et al. (2024). Rising incidence of mucormycosis is a new panic challenge in southwest of Iran during COVID-19 pandemic: Associated risk factors and preventive measures. The New Armenian Medical Journal, vol.18(4), 84-90; https://doi.org/10.56936/18290825-4.v18.2024-84

Address for Correspondence:

Sima Sadeghzadeh Diman Department of Otolaryngology, Ahvaz Jundishapur University of Medical Sciences Golestan Street, Ahvaz 6135715794, Iran

Tel.: (+98) 061-33738580

E-mail: sadeghzadehsima91@gmail.com

Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has presented with a wide range of clinical symptoms, from mild to severe. While some patients have recovered from the initial infection, many continue to experience persistent post-COVID complications. Alarmingly, there has been a surge in secondary fungal infections, including COVID-associated pulmonary aspergillosis and candidemia, among these individuals, underscoring the importance of proactive monitoring and treatment [*Nucci M et al.*, 2021].

The increase in mucormycosis after the CO-VID-19 pandemic has become a serious medical concern. Mucormycosis is a rare and serious fungal infection caused by Mucorales fungi. This infection mostly occurs in individuals with weakened immune systems, such as those with diabetes, lymphoma, organ transplant recipients, HIV-infected individuals, and those using immunosuppressive medications or having a high iron load [Sharma S et al., 2021]. Clinical symptoms of mucormycosis may vary depending on the site and severity of the infection. Rhino-orbital-cerebral mucormycosis is one of the most common types, affecting various body parts, including the nasal and sinus regions, brain, and other respiratory and gastrointestinal areas [Ramadorai A et al., 2019]. Mucormycosis is transmitted by inhaling fungal spores into the respiratory system and nose. Additionally, direct contact with injured wounds or damaged skin can also allow the fungus to enter the body [Richardson M, 2009]. Moreover, this infection has the potential to directly disseminate into the paranasal sinuses, and from there, it can further spread into the surrounding orbital and intracranial spaces through two possible routes: direct extension or hematogenous dissemination, where the infection enters the bloodstream and is transported to other areas [Wiersinga W et al., 2020]. Prevention of mucormycosis includes strict diabetes control and moderating the use of steroids to reduce the risk of infection [Huang C et al., 2020]. The diagnosis of mucormycosis involves the use of features such as hyphal diameter, septation, pigmentation, and branching angles, which distinguish this disease from other fungal infections. Various diagnostic methods, including direct

microscopy, fungal culture, histopathology, sensitivity testing, antigen testing, antibody testing, and molecular tests (DNA and RNA) from suspected patient samples, are used to diagnose fungal infections [Kozel T, Wickes R, 2014]. The treatment of mucormycosis involves surgical removal of infected tissue, antifungal medications such as Amphotericin B and Posaconazole, and management of underlying conditions such as diabetes [Yoon Y et al., 2010; Kyvernitakis A et al., 2016]. Due to the severity of this infection and its rising occurrence following the COVID-19 pandemic, it is crucial to promptly diagnose and treat this infection and to implement suitable prevention and management programs [Cornely O et al., 2019]. Furthermore, educational programs to increase public and medical staff awareness about the signs and risk factors for this infection are essential. the increase in mucormycosis cases post-COVID-19 pandemic is a serious medical concern that requires immediate attention. By understanding the risk factors, clinical manifestations, diagnostic approaches, and treatment strategies, we can combat this fungal infection effectively. Additionally, public awareness and education campaigns can play a vital role in preventing the spread of mucormycosis and improving patient outcomes. Therefore, this study aimed to assess the associattion between risk factors and preventive measures of mucormycosis is a new panic challenge in southwest of Iran during COVID-19 pandemic.

MATERIAL AND METHODS

In this case-control study, an examination was carried out on the medical records of patients archived at Imam Khomeini Hospital in southwest Iran (Ahvaz) (January 2021 to October 2021). Demographic and clinical information of COVID-19 patients (including age, gender, underlying medical conditions, etc.) was extracted from the patient's files. After extracting the demographic and clinical information, the relationship between the identified factors (age, gender, corticosteroid use, immunosuppressive drug use, organ transplant history, underlying diseases: diabetes, hypertension, coronary artery disease, chronic kidney and liver diseases) and the incidence of mucormycosis was investigated. The data were divided into two groups, case and control, in a 1:1 ratio: those with confirmed mucormycosis and individuals without mucormycosis. Patients diagnosed with mucormycosis based on histopathology and/or culture, definitively indicating Mucormycosis, and having a history of COVID-19 infection or active COVID-19 disease were included. It should also be noted that the criterion for COVID-19 was a positive polymerase chain reaction test with the COVID-19 pattern on the patient's chest CT scan. The data were subjected to binary logistic regression analysis to evaluate potential risk factors for Mucormycosis.

The study population included hospitalized patients with confirmed rhino-orbital-cerebral mucormycosis who had a history of COVID-19 or were active COVID-19 patients. The inclusion criteria were as follows: COVID-19 diagnosis based on at least one of the following criteria by an infectious disease specialist: a) Diagnosis of new coronavirus nucleic acid in respiratory or blood samples using Real-time polymerase chain reaction, b) Typical lung patterns of COVID-19 on chest CT scan. The diagnosis of mucormycosis required assessment by the relevant specialist. The exit criteria for the study were as follows: 1) Lack of information in the medical records, 2) No history of or current COVID-19 infection. Statistical analysis of the data was performed using SPSS 21 software. To compare between groups, the Chi-square test, Mann-Whitney U test, and Regression analysis were used. The logistic regression model was also used to express the impact of variables. The significance level was set at p<0.05 in this study. The mean, median, standard deviation, minimum and maximum values, and range were calculated, and data were presented as mean ± SD (standard deviation). Written informed consent was obtained from the patients. In recording patient data, their personal information were not included, and during the research, codes was used for data categorization instead of mentioning the patients' names. Furthermore, all religious, ethical, and legal standards have been followed for all stages of plan implementation.

RESULTS

The current study was conducted to investigate the increase in the occurrence of mucormycosis as a significant challenge in southwestern Iran during the COVID-19 pandemic. The analysis included 48 patients (28 men, 20 women) with mu-

cormycosis and 52 individuals as controls. In the mucormycosis group, the mean age of the study participants was 52.9 ± 9.53 years (ranging from 27 to 88 years) (Figure, 1A). Most of the patients in the study fell within the age group of 41 to 60 years (45.3%). The majority of the study participants with mucormycosis were male (28 individuals, 58.3%). Among the patients with mucormycosis, the most prevalent underlying conditions were diabetes (93.8%) and hypertension (41.7%) (Table 1). In the control group, the mean age of the study subjects was 59.48±1.71 years (ranging from 27 to 85 years). Only 24 individuals (50%) had a history of steroid use. 13 individuals (27.1%) had a history of using other immunosuppressive drugs, excluding corticosteroids. Finally, only 3 individuals (6.3%) had a history of organ transplantation.

In the control group, the mean age of the study subjects was 59.48±1.71 years (ranging from 27 to 85 years). Most of the patients in the control group (27 men, 25 women) were in the age range of 41 to 60 years (50%) (Figure, 1B). The majority of the study participants in the control group were male (27 individuals, 51%). Among the control group participants, the most prevalent underlying conditions were hypertension (32%), dyslipidemia (21%), and diabetes (19%) (Table 2). Three individuals (8.5%) had a history of steroid use. Only also 3 individuals (7.5%) had a history of using immu-

Table 1
Prevalence of different underlying diseases in the control group and in the mucormycosis group

Past medical history	%	Frequency				
Control Group						
Diabetes mellitus	19.2	10				
Hypertension	32.7	17				
Hyperlipidemia	21.2	11				
Ischemic heart disease	9.6	5				
Kidney disease	1.9	1				
Liver disease	3.8	2				
Patients with Mucormycosis						
Diabetes mellitus	93.8	45				
Hypertension	41.7	20				
Hyperlipidemia	12.5	6				
Ischemic heart disease	10.4	5				
Kidney disease	4.2	2				
Liver disease	2.1	1				

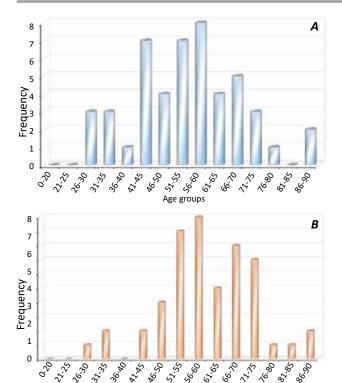


Figure 1. Prevalence of different age groups in the control group (A) and in patients with mucormycosis (B)

Age groups

nosuppressive drugs, excluding corticosteroids. The risk factors associated with an increased likelihood of mucormycosis were diabetes compared to non-diabetic individuals, with an adjusted odds ratio of 63 (95% confidence interval: 16.28-244) (Table 2). Additionally, corticosteroid treatment was a significant risk factor, with an odds ratio of 16.3 (95% confidence interval: 4.47-59.67) (Table 2). Finally,

only 2 individuals (8.3%) had a history of organ transplantation. Use as well as treatment with immunosuppressive drugs, excluding corticosteroids, was a significant risk factor (odds ratio=6.06, 95% confidence interval: 1.60-22.89) (Table 2).

Therefore, diabetes, corticosteroid use, and immunosuppressive drug use were the predominant risk factors for mucormycosis.

DISCUSSION

The present study was conducted to investigate the increased occurrence of mucormycosis as a significant challenge in the southwest of Iran during the COVID-19 pandemic. Diabetes, corticosteroid use, and immunosuppressive drugs were predominant risk factors for mucormycosis. Generally, the global incidence of mucormycosis ranges from 0.003 to 0.005 cases per 1.7 million individuals in different populations. However, in the years 2019 to 2020, the prevalence in India was more than 80 times higher than any other country [Chander J et al., 2018; Prakash H, Chakrabarti A, 2019; Skiada A et al., 2020], turning India into the country with the highest number of mucormycosis cases in the world. The COVID-19 is now associated with a considerable number of opportunistic fungal and bacterial infections [Kubin C et al., 2021]. The primary reason for the proliferation of these opportunistic fungal infections is the ability of fungal spores to germinate in the ideal environment created by the respiratory system of COVID-19 patients

Table 2

Odds Ratio of Mucormycosis Incidence in Diabetic Patients Compared to Non-Diabetic, in Patients
Using Corticosteroids and in Patients Using Other Immunosuppressive Drugs Compared to Individuals
Not Using Other Immunomodulatory Medications

That Using Other Immunomodulatory Medications								
Step 1 ^a	В	S.E.	Sig.	EXP (B)=Odds	5% Confidence interval for EXP (B)			
				ratio	Lower	Upper		
Diabetic Patients Compared to Non-Diabetic								
Diabetes mellitus	4.270	0.700	0.000	71.556	18.147	282.150		
Constant	-2.639	0.598	0.000	0.071				
Patients Using Corticosteroids.								
corticosteroid	2.793	0.661	0.000	16.333	4.470	59.679		
Constant	-0.714	0.249	0.004	0.490				
Using Other Immunosuppressive. Drugs Compared to Individuals Not Using Other Immunomodulatory Medications								
Other immunosupressive drug	1.803	0.678	0.008	6.067	1.607	22.897		
Constant	-0.336	0.221	0.128	0.714				

[Mahalaxmi I et al., 2021]. COVID-19 patients typically exhibit low oxygen, high glucose levels, acidic environment (metabolic acidosis), diabetic ketoacidosis, elevated iron concentration (increased ferritin), and reduced phagocytic activity [Palermo N et al., 2020]. Early diagnosis of mucormycosis is the primary cornerstone for facilitating and initiating antifungal treatment [Zubair S et al., 2017]. This was also indicated in the study by Pal et al. in 2021 in India, where 72% of individuals with COV-ID-19-associated mucormycosis were hospitalized. Among them, 78% were male, and 85% had diabetes. Furthermore, 85% of the patients were non-ketoacidotic, and 85% of the patients had a history of corticosteroid use [Pal R et al., 2021]. In our study, a total of 48 patients with mucormycosis and 52 individuals as controls were included for analysis. The mean age of the study group with mucormycosis was 52.9 ± 9.53 years (27 to 88 years). Most of the patients in the age group of 41 to 60 years (45.3%) were included. The majority of the patients in the study were male (28 individuals, 58.3%). In a study conducted by Sundaram N et al. in India in 2021, various risk factors such as diabetes, sinusitis, renal failure, organ transplantation, trauma, malnutrition, neutropenia, acquired immunodeficiency disease, corticosteroid use, broad-spectrum antibiotics, and drug abuse were found to be significant contributors to mucormycosis [Al Awaidy S, Khamis F, 2019]. In our study, it has been identified that diabetes, treatment with corticosteroids, and the use of immunosuppressive agents are associated risk factors for mucormycosis in COVID-19 patients."

Currently, corticosteroids are the mainstay of treatment in severe COVID-19 patients [Nehara H et al., 2021]. It has been demonstrated that corticosteroids effectively increase survival and reduce mortality in COVID-19 patients [Sterne J et al., 2020]. However, corticosteroid use diminishes the phagocytic capability of white blood cells and renders patients susceptible to fungal infections. Moreover, corticosteroid-induced diabetes, either as a new onset or exacerbation of previous Diabetes mellitus, may enhance mucormycosis growth [Lionakis M, Kontoyiannis D, 2003]. The use of immunosuppressive drugs, particularly corticosteroids, should be minimized or discontinued whenever feasible [Maini A et al., 2021]. In our study, in the mucormycosis group (50%) had a history of steroid use and (27.1%) had a history of using immunosuppressive drugs excluding corticosteroids , which significantly correlated with an increased occurrence of mucormycosis. The expression of two angiotensin-converting enzyme receptors in pancreatic islets in COVID-19, coupled with increased insulin resistance due to a cytokine storm, might explain the diabetogenic nature of COV-ID-19 [Owolabi J, Bekele A. 2021]. Excessive glucose occupies the binding sites of ferritin and transferrin in hyperglycemia. Consequently, free iron levels increase, leading to heightened sensitivity to mucormycosis. Additionally, diabetic ketoacidosis can lead to an acidic state, providing more available free iron for fungal growth, thus increasing the risk of mucormycosis [Ibrahim A et al., 2012]. In our study, diabetes and hyperglycemia were also among the risk factors for increased mucormycosis. Therefore, meticulous blood glucose control is crucial in the prevention and treatment of these patients. Some studies have reported cases involving lymphoma, leukemia, and solid organ transplantation patients [Arana C et al., 2021; Zurl C et al., 2021]. While these observations do not align with our study, based on available evidence, malignancies, organ transplants, and hemopathies are recognized risk factors for mucormycosis [Sugar A, 1992; Cornely O et al., 2019]. Furthermore, in an observational study by Patel et al. (2020), malignancy and organ transplant were identified as the most significant risk factors after. This is in contrast to our study, where a low percentage had a history of organ transplantation. Such discrepancies may stem from the small sample size and variations in sampling.

CONCLUSION

In this study, potential pre-existing risk factors (such as diabetes, corticosteroid use, immunosuppressive drugs, etc.) were investigated in southwestern Iran and revealed that this conditions increase the risk of COVID-19-associated mucormycosis risk. Avoiding corticosteroids in mild cases and closely monitoring blood sugar level can help to reduce of COVID-19-associated mucormycosis. Limitations of this study include not examining the type and dosage of immunosuppressive drugs, the patients' ferritin levels, and the consequences and prognosis of mucormycosis cases.

REFERENCES

- Al Awaidy ST, Khamis F (2019). Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Oman: Current Situation and Going Forward. Oman Med J. 34(3): 181-183 DOI: 10.5001/omj.2019.36
- Arana C, Cuevas Ramírez RE, Xipell M., et al (2021). Mucormycosis associated with COVID-19 in two kidney transplant patients. Transpl Infect Dis. 23(4): e13652 DOI: 10.1111/tid.13652
- 3. Chander J, Kaur M, Singla N., et al (2018). Mucormycosis: Battle with the Deadly Enemy over a Five-Year Period in India. J Fungi (Basel). 4(2): DOI: 10.3390/jof4020046
- 4. Cornely OA, Alastruey-Izquierdo A, Arenz D., et al (2019). Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 19(12): e405-e421 DOI: 10.1016/s1473-3099(19)30312-3
- 5. Huang C, Wang Y, Li X., et al (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395(10223): 497-506 DOI: 10.1016/s0140-6736(20)30183-5
- 6. *Ibrahim AS, Spellberg B, Walsh TJ.*, et al (2012). Pathogenesis of mucormycosis. Clin Infect Dis. 54(1): S16-22 DOI: 10.1093/cid/cir865
- 7. Kozel TR, Wickes B (2014). Fungal diagnostics. Cold Spring Harb Perspect Med. 4(4): a019299 DOI: 10.1101/cshperspect.a019299
- 8. Kubin CJ, McConville TH, Dietz D., et al (2021). Characterization of Bacterial and Fungal Infections in Hospitalized Patients With Coronavirus Disease 2019 and Factors Associated With Health Care-Associated Infections. Open Forum Infect Dis. 8(6): ofab201 DOI: 10.1093/ofid/ofab201
- 9. Kyvernitakis A, Torres HA, Jiang Y., et al (2016). Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: a propensity score analysis. Clin Microbiol Infect. 22(9): 811.e811-811.e818 DOI:

- 10.1016/j.cmi.2016.03.029
- Lionakis MS, Kontoyiannis DP (2003). Glucocorticoids and invasive fungal infections.
 Lancet. 362(9398): 1828-1838 DOI: 10.1016/s0140-6736(03)14904-5
- 11. Mahalaxmi I, Jayaramayya K, Venkatesan D., et al (2021). Mucormycosis: An opportunistic pathogen during COVID-19. Environ Res. 201: 111643 DOI: 10.1016/j.envres.2021.111643
- 12. Maini A, Tomar G, Khanna D., et al (2021). Sino-orbital mucormycosis in a COVID-19 patient: A case report. Int J Surg Case Rep. 82: 105957 DOI: 10.1016/j.ijscr.2021.105957
- 13. Nehara HR, Puri I, Singhal V., et al (2021). Rhinocerebral mucormycosis in COVID-19 patient with diabetes a deadly trio: Case series from the north-western part of India. Indian J Med Microbiol. 39(3): 380-383 DOI: 10.1016/j.ijmmb.2021.05.009
- 14. Nucci M, Barreiros G, Guimarães LF., et al (2021). Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses. 64(2): 152-156 DOI: 10.1111/myc.13225
- 15. Owolabi J, Bekele A. (2021), Medical educators' reflection on how technology sustained medical education in the most critical times and the lessons learnt: insights from an African medical school. Digital Health. 2021;7:20552076211059358.https://www.ncbi.nlm.nih.gov/pubmed/30873397
- 16. Pal R, Singh B, Bhadada SK., et al (2021). COVID-19-associated mucormycosis: An updated systematic review of literature. Mycoses. 64(12): 1452-1459 DOI: 10.1111/myc.13338
- Palermo NE, Sadhu AR, McDonnell ME (2020). Diabetic Ketoacidosis in COVID-19: Unique Concerns and Considerations. J Clin Endocrinol Metab. 105(8): DOI: 10.1210/clinem/dgaa360
- 18. Patel A, Kaur H, Xess I., et al (2020). A multicentre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. Clin Microbiol Infect. 26(7): 944.e949-944.e915 DOI: 10.1016/j. cmi.2019.11.021

- 19. Prakash H, Chakrabarti A (2019). Global Epidemiology of Mucormycosis. J Fungi (Basel). 5(1): DOI: 10.3390/jof5010026
- 20. Ramadorai A, Ravi P, Narayanan, V (2019). Rhinocerebral Mucormycosis: A Prospective Analysis of an Effective Treatment Protocol. Ann Maxillofac Surg. 9(1): 192-196 DOI: 10.4103/ams.ams_231_18
- 21. Richardson M (2009). The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 15(5): 2-9 DOI: 10.1111/j.1469-0691.2009.02972.x
- 22. Sharma S, Grover M, Bhargava S., et al (2021). Post coronavirus disease mucormycosis: a deadly addition to the pandemic spectrum. J Laryngol Otol. 135(5): 442-447 DOI: 10.1017/s0022215121000992
- 23. Skiada A, Pavleas I, Drogari-Apiranthitou M (2020). Epidemiology and Diagnosis of Mucormycosis: An Update. J Fungi (Basel). 6(4): DOI: 10.3390/jof6040265
- 24. Sterne JAC, Murthy S, Diaz JV., et al (2020). Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. Jama. 324(13): 1330-1341 DOI: 10.1001/jama.2020.17023

- 25. Sugar AM (1992). Mucormycosis. Clin Infect Dis. 14(1): S126-129 DOI: 10.1093/clinids/14. supplement_1.s126
- 26. Sundaram N, Bhende T, Yashwant R, Jadhav S, Jain A (2021). Mucormycosis in COVID-19 patients. Indian J Ophthalmol. 69(12): 3728-3733
- 27. Wiersinga WJ, Rhodes A, Cheng AC., et al (2020). Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. Jama. 324(8): 782-793 DOI: 10.1001/jama.2020.12839
- 28. Yoon YK, Kim MJ, Chung YG., et al (2010). Successful treatment of a case with rhino-orbital-cerebral mucormycosis by the combination of neurosurgical intervention and the sequential use of amphotericin B and posaconazole. J Korean Neurosurg Soc. 47(1): 74-77 DOI: 10.3340/jkns.2010.47.1.74
- 29. Zubair S, Azhar A, Khan N., et al (2017). Nanoparticle-Based Mycosis Vaccine. Methods Mol Biol. 1625: 169-211 DOI: 10.1007/978-1-4939-7104-6_13
- 30. Zurl C, Hoenigl M, Schulz E., et al (2021). Autopsy Proven Pulmonary Mucormycosis Due to Rhizopus microsporus in a Critically Ill COVID-19 Patient with Underlying Hematological Malignancy. J Fungi (Basel). 7(2): DOI: 10.3390/jof7020088

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024). Issue 4

The Journal is founded by Yerevan State Medical University after M. Heratsi.

Rector of YSMU

Armen A. Muradyan

Address for correspondence:

Yerevan State Medical University 2 Koryun Street, Yerevan 0025, Republic of Armenia

Phones:

(+37410) 582532 YSMU (+37493 588697 Editor-in-Chief

Fax: (+37410) 582532

E-mail:namj.ysmu@gmail.com, ysmiu@mail.ru

URL:http//www.ysmu.am

Our journal is registered in the databases of Scopus, EBSCO and Thomson Reuters (in the registration process)

Scopus

S EBSCO REUTERS

Copy editor: Tatevik R. Movsisyan

Printed in "LAS Print" LLC Director: Suren A. Simonyan Armenia, 0023, Yerevan, Acharyan St. 44 Bulding, Phone: (+374 10) 62 76 12, E-mail: las.print@yahoo.com

Editor-in-Chief

Arto V. Zilfyan (Yerevan, Armenia)

Deputy Editors

Hovhannes M. **Manvelyan** (Yerevan, Armenia) Hamayak S. **Sisakyan** (Yerevan, Armenia)

Executive Secretary

Stepan A. Avagyan (Yerevan, Armenia)

Editorial Board

Armen A. Muradyan (Yerevan, Armenia)

Drastamat N. Khudaverdyan (Yerevan, Armenia)

Levon M. Mkrtchyan (Yerevan, Armenia)

Foregin Members of the Editorial Board

Carsten N. Gutt (Memmingen, Germay)
Muhammad Miftahussurur (Indonesia)
Alexander Woodman (Dharhan, Saudi Arabia)

Coordinating Editor (for this number)

Hesam Adin **Atashi** (Tehran, Iran)

Editorial Advisory Council

Mahdi Esmaeilzadeh (Mashhad, Iran)

Ara S. Babloyan (Yerevan, Armenia)

Aram Chobanian (Boston, USA)

Luciana **Dini** (Lecce, Italy)

Azat A. **Engibaryan** (Yerevan, Armenia)

Ruben V. Fanarjyan (Yerevan, Armenia)

Gerasimos Filippatos (Athens, Greece)

Gabriele **Fragasso** (Milan, Italy)

Samvel G. Galstyan (Yerevan, Armenia)

Arthur A. Grigorian (Macon, Georgia, USA)

Armen Dz. **Hambardzumyan** (Yerevan, Armenia)

Seyran P. **Kocharyan** (Yerevan, Armenia)

Aleksandr S. **Malayan** (Yerevan, Armenia)

Mikhail Z. Narimanyan (Yerevan, Armenia)

Levon N. Nazarian (Philadelphia, USA)

Yumei Niu (Harbin, China)

Linda F. **Noble-Haeusslein** (San Francisco, USA)

Arthur K. Shukuryan (Yerevan, Armenia)

Suren A. **Stepanyan** (Yerevan, Armenia)

Gevorg N. **Tamamyan** (Yerevan, Armenia)

Hakob V. **Topchyan** (Yerevan, Armenia)

Alexander **Tsiskaridze** (Tbilisi, Georgia)

Konstantin B. Yenkoyan (Yerevan, Armenia)

Peijun Wang (Harbin, Chine)

a

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024). Issue 4

CONTENTS

- 4. ABDRAMANOV K.A., KOKOEV E.B., ABDRAMANOV A.K., ARZIBAEVA P.M., ALISHEROV R.T.
 DYNAMICS OF THE LEVEL OF AMINO-TERMINAL FRAGMENT OF PRO-BRAIN
 NATRIURETIC PEPTIDE IN PATIENTS WITH ATRIAL SEPTAL DEFECT LIVING AT HIGH
 ALTITUDE AT DIFFERENT STAGES OF DEFECT CORRECTION
- 12. KIRAKOSYAN E.V., NAZARENKO T.A., TROFIMOV D.YU., PAVLOVICH S.V., SUKHIKH G.T. UNEXPLAINED INFERTILITY: CLINICAL CHARACTERISTICS OF COUPLES AND EMBRYOLOGICAL FEATURES OF IN VITRO FERTILIZATION PROGRAMS
- 25. HOVHANNISYAN A.H., BAGHDASARYAN E.G., BAGHDASARYAN A.G., HARUTYUNYAN L.G., GRIGORYAN S.V., KHAN S., PANDIT D., ASOYAN V.A.

 THE CHALLENGES OF TREATMENT OF PATIENT WITH VIRAL HEPATITIS C AND BRUCELLOSIS:
- 31. SADUAKAS A.Y., KURAKBAYEV K.K., ZHAKUBAYEV M.A., MATKERIMOV A.ZH., SHAMSHIYEV A.S., KHANSHI MEAD, ABILKHANOV Y.Y., MAKKAMOV R.O., ERKINBAYEV N.N., KOZHAMKUL A.ZH.

 OUTCOME COMPARISON OF CAROTID ENDARTERECTOMY AND CAROTID ARTERY STENTING IN PATIENTS WITH EXTRACRANIAL CAROTID ARTERY STENOSIS: ONE-HOSPITAL-BASED RETROSPECTIVE STUDY
- 37. SAROYAN G.E., MANUKYAN R.R., OHAN G.G., TER-STEPANYAN M.M.
 GROUP B STREPTOCOCCUS IN PREGNANCY, EPIDEMIOLOGICAL PECULIARITIES OF
 EARLY AND LATE ONSET STREPTOCOCCAL INFECTIONS IN NEWBORNS
- 46. Tukeshov S.K., Baysekeev T.A., Choi E.D., Kulushova G.A., Nazir M.I., Jaxymbayev N.B., Turkmenov A.A.

 DIAGNOSTICS, SURGICAL TREATMENT, AND REHABILITATION OF PATIENTS WITH COMPLEX FRACTURED HAND INJURIES
- 55. YAVROYAN ZH.V., HAKOBYAN N.R., HOVHANNISYAN A.G., GEVORGYAN E.S.
 CISPLATIN AND DEXAMETHASONE SEPARATE AND COMBINED ACTION ON LIPID PEROXIDATION IN NUCLEAR FRACTIONS OF RAT BRAIN AND KIDNEY CELLS
- 67. Shojaei S., Hanafi M.G., Sarkarian M., Fazelinejad Z.

 PROGNOSTIC FACTORS FOR ENLARGED PROSTATE IN HEALTHY MEN'S ADULTS: A
 CROSS-SECTIONAL STUDY
- 73. BAYKOV A.V., HOVHANNISYAN H.A.

 PRIORITIZING COMMUNICATION SKILLS IN THE ARMENIAN UNDERGRADUATE
 MEDICAL EDUCATION SYSTEM
- 84. KARDOONI M., NIKAKHLAGH S., SALMANZADEH S., MIRMOMENI G., SADEGH ZADEH DIMAN S.
 RISING INCIDENCE OF MUCORMYCOSIS IS A NEW PANIC CHALLENGE IN SOUTHWEST
 OF IRAN DURING COVID-19 PANDEMIC: ASSOCIATED RISK FACTORS AND
 PREVENTIVE MEASURES
- 91. Masharipova A., Nurgaliyeva N., Derbissalina G., Blaževičiene A. EVIDENCE-BASED PRACTICE IN PALLIATIVE CARE NURSING
- 98. Karrar Alsharif M.H., Elamin A.Y., Almasaad J.M., Bakhit N.M., Alarifi A., Taha K.M., Hassan W.A., Zumrawi E.

USING CHATGPT TO CREATE ENGAGING PROBLEM-BASED LEARNING SCENARIOS IN ANATOMY: A STEP-BY-STEP GUIDE

- 107. MARDIYAN M.A., DUNAMALYAN R.A., SAKANYAN G.H., SARGSYAN A.V., SAHAKYAN A.A., MKRTCHYAN S.A., SHUKURYAN A.K., GALSTYAN H.G.
 INTERRELATIONS BETWEEN SITUATIONAL AND PERSONAL ANXIETY AND QUALITY OF LIFE DOMAINS
- 114. VARDANYAN G.R.

 HEALTH RISKS OF SHIFT WORK FOR SERVICEMEN: PREVENTION AND REDUCTION STRATEGIES
- 122. ANDRADE-ROCHA F.T., CARDONA MAYA W.D.

 THE STRONG NEGATIVE IMPACT OF VARICOCELE ON SPERM MORPHOLOGY AND INFERTILITY: A CASE REPORT