

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024), Issue 3 p. 22-34

DOI: https://doi.org/10.56936/18290825-3.v18.2024-22

MECHANISM OF BACTERIAL LIPOPOLYSACCHARIDE EFFECT ON THE FUNCTIONAL ACTIVITY OF THE HEART IN VITRO. CORRECTION OF ITS EFFECTS BY THE CALCIUM REGULATING HORMONE SYSTEM

HARUTYUNYAN K.R., ABRAHAMYAN H.T.*, ADAMYAN S.H., TER-MARKOSYAN A.S.

Department of Physiology, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia

*Received 26.02.2024; Accepted for printing 04.08.2024

ABSTRACT

Bacterial lipopolysaccharides belong to the group of pathogen-associated molecular patterns such as alarmins. They can cause various dysfunctions of the cardiovascular system, including arrhythmia, myocardial hypertrophy, myocarditis, and heart failure.

The damaging effect of lipopolysaccharides on the myocardium can be a result of their direct action or ensured by uncontrolled secretion of endogenous alarmins and cytotoxic shock.

Lipopolysaccharides are perceived by specific caspases of host cells and activate the release of interleukins, and in maximum stimulation they lead to necrosis and/or pyroptosis of cells.

The mechanism of the action of bacterial lipopolysaccharide on the functional activity of the heart was studied in vitro using an isolated frog heart model. By the method of pharmacological blockade, the participation of calcium and potassium channels, phosphodiesterase and Na⁺-K⁺-ATPase in the mechanism of the lipopolysaccharide influence on the inotropic and chronotropic activity of the heart was revealed.

In our experiments, we observed a dose-dependent negative effect of lipopolysaccharide on the inotropic and chronotropic functions of isolated frog heart, as well as a significant reduction in its viability.

It is assumed that the mechanism of the action of lipopolysaccharide on the heart involves calcium and potassium ions, Na^+-K^+-ATP and cAMP.

The study investigated the role of the calcium-regulating hormonal system (including parathyroid hormone, parathyroid hormone-related protein, calcitonin, and vitamin D_3) in preventing disturbances in the functional parameters of the isolated heart induced by bacterial lipopolysaccharide.

The protective role of these hormones in preserving the pacemaker and contractile functions of the heart under the influence of bacterial lipopolysaccharide has been shown. A particularly significant effect is exerted by vitamin D_3 , parathyroid hormone and parathyroid hormone-related protein, which maintain the functional activity of the isolated heart for a long time.

KEYWORDS: bacterial lipopolysaccharide, heart, calcium-regulating hormonal system, calcium and potassium channels, cAMP, Na^+ - K^+ -ATPase.

Introduction

Lipopolysaccharide (LPS) is an important component of outer membrane of gram-negative bacte-

ria. Bacterial lipopolysaccharides belong to the group of pathogen-associated molecular patterns

CITE THIS ARTICLE AS:

Harutyunyan K.R., Abrahamyan H.T., Adamyan S.H., Ter-Markosyan A.S. (2024). Mechanism of bacterial lipopolysaccharide effect on the functional activity of the heart in vitro. Correction of its effects by the calcium regulating hormone system: A systematic review, The New Armenian Medical Journal, vol.18(2), 22-34; https://doi.org/10.56936/18290825-3.v18.2024-22

Address for Correspondence:

Hermine T. Abrahamyan, PhD Department of Physiology Yerevan State Medical University after M. Heratsi 2 Koryun Street, Yerevan 0025, Armenia

Tel.: (+374 93) 39-09-80 E-mail: ah200588@gmail.com such as alarmins. They can cause various dysfunctions of the cardiovascular system, including arrhythmia, myocardial hypertrophy, myocarditis, and heart failure [Bowman J et al., 2017]. The damaging effect of LPS on the myocardium can result from its direct action or from the uncontrolled secretion of endogenous alarmins of damage-associated molecular patterns [Gallucci S, Matzinger P, 2001]. Endogenous and exogenous pro-inflammatory factors are releasing during mechanical, hypoxic, necrotic, pathogen-induced cell damage and are triggers of innate and adaptive immune reactions [Yang D et al., 2017]. The immune responses are aimed at protecting host cells through neovascularization, repair and regeneration of damaged cardiac tissue [Lai S et al., 2019]. Alarmins play a key role in the processes of stem cell proliferation and neo-angiogenesis. At the same time, excessive activation of alarmins causes a cytokine storm and leads to cell death [Yang D et al., 2017; Russo A et al., 2021]. Bacterial lipopolysaccharides are perceived by specific caspases in host cells and activate the release of interleukins. However, under conditions of maximum stimulation they can lead to necrosis and/or pyroptosis of cells [Rathinam V et al., 2019]. Lipopolysaccharide promotes the release of high mobility group box 1 (HMGB1), an alarmin associated with damage-associated molecular patterns, into the extracellular space. It accelerates the degradation processes in hepatocytes through the activation of caspase-11 [Deng M et al., 2018]. High mobility group box 1 has a multifunctional effect on the cardiac tissue: on the one hand, alarmin is involved in the processes of modulating the inflammatory process in the myocardium [Germani A et al., 2007; Raucci A et al., 2019], and on the other hand, it is a powerful proinflammatory cytokine that accelerates ischemic damage of tissue (Janus face) [Zhai C et al., 2012; Kang R et al., 2014]. Secretion of the HMGB1 is realized by activation of calcium-calmodullin-dependent protein kinase mechanism [Zhai C et al., 2012]. While the effects of HMGB1 during the acute phase of heart tissue injury are generally considered cytoprotective, its prolonged action might be more negative [Raucci A et al., 2019]. Elevated serum levels of HMGB1 in LPS-induced sepsis have been associated with negative inotropic effects. Treatment of feline cardiac myocytes

with HMGB1 resulted in decreased sarcomere shortening and a reduction in the height of the peak Ca2+ transient, possibly due to the decreased calcium levels [*Tzeng H et al.*, 2008].

By binding to calcium-specific G-receptors, LPS increases calcium load, induces autophagy of cardiomyocytes [Wang H et al., 2013] and disrupts cardiac electrophysiological parameters by suppressing calcium-regulated potassium current [Yücel G et al., 2017]. Activation of Toll-like receptors-4 by LPS promotes the production of norepinephrine by intra-cardiac structures and leads to myocardial hypertrophy [Yang D et al., 2022]. Lipopolysaccharide also activates macrophages, dendritic cells, CD4-markers and can cause the atherosclerosis and vasculitis [Gorabi A et al., 2022]. It is believed that LPS enhances secretion of TNF-α, thereby causes cardiac depression [Bowman J et al., 2017]. It has been shown that any inflammatory process is accompanied by uncontrolled secretion of pro-inflammatory alarmins, resulting in myocardial damage and chronic heart failure. This, in turn, causes impaired tissue perfusion and is involved in the mechanism of multiorgan damage [Van Linthout S, Tschöpe C, 2017].

The cardiac effects of LPS depend not only on the dose (low concentrations enhance and high concentrations suppress cardiac activity), but also on the experimental model (in vivo or in vitro) [Kuo F et al., 2023]. Intraperitoneal administration of LPS to animals resulted in a significant prolongation of the HR and QT intervals, as well as a shortening of the QRS complex on the electrocardiogram. These effects were mitigated by concurrent administration of LPS and 1-34 active fragments of parathyroid hormone (PTH) [Harutyunyan K et al., 2022 a; b]. Negative T wave in ECG, tachycardia and decreased arterial pressure is observed in 8-hour exposure to LPS [Blad S et al., 2008]. Variability of ECG in LPS-exposure depends on age: the effect of LPS (increased PR, QT intervals, decreased heart rate) was more prominent in old mice [Esfahani N et al, 2021]. The cardio-protective effects of calcium-regulating hormones in cardiomyopathy, myocarditis and chronic heart failure was shown in our previous studies [Arakelyan K et al., 2007; Adamyan S et al., 2021; Harutyunyan K et al., 2023] and confirmed in numerous literature sources [Brown S et al., 2017;

Goltzman D et al., 2018]. Mobilization of CD34+/ CD45, increased neovascularization and reparative properties of cardiomyocytes were observed when PTH was administered directly into the infarction zone in mice [Zaruba M et al., 2008]. The activation of inotropic and chronotropic functions by parathyroid hormone and parathyroid hormonerelated protein (PTH-rP) is discussed in other studies [Brown S et al., 2017]. Several mechanisms have been proposed relating vitamin D deficiency to cardiovascular risk factors such as renin-angiotensin-aldosterone system activation, abnormal nitric oxide regulation, oxidative stress or altered inflammatory pathways [De la Guía-Galipienso F et al., 2021]. Another mechanism of antimicrobial action of vitamin D involves down-regulating the production of cytotoxic factors and regulating iron metabolism in cells [Bilezikian J et al., 2020]. The cardioprotective effects of these hormones are realized through the involvement of Ca2+, K+, Na+ ions, protein kinases A and C, Na+-K+-ATPase, Na⁺-Ca²⁺-exchanger, etc. in the process [Eisner D et al., 2017; Ter-Markosyan A et al., 2017; Goltzman D et al., 2018]. One of the most severe outcomes of sepsis is cardiac dysfunction, characterized by a decrease in ventricular ejection fraction, leading to reduced perfusion of peripheral and central organs such as the heart, kidneys and central nervous system [Valeanu L et al., 2021]. Maintaining the contractile function of the heart, its left ventricular ejection fraction and other hemodynamic parameters, significantly increases patient survival in conditions of cytotoxic attacks.

Despite the availability of numerous literature data on the effects of LPS on cardiac function parameters, the mechanism of its action has not been thoroughly studied. This research aimed to study the mechanism of LPS action on functional parameters such as pacemaker activity and heart rate amplitude using an isolated animal heart model (*in vitro*) and assess the role of the calcium-regulating hormonal system in correcting any shifts in these parameters induced by LPS.

MATERIAL AND METHODS

Model experiments were performed on isolated hearts of frogs (*Rana temporaria*). The maintenance and use of experimental animals adhered to the provisions of the Institutional Committee of

Bioethics. All stages of experiments were directly controlled by the Ethical Committee of Yerevan State Medical University. The choice of isolated organ methods allows for studying the mechanisms of direct influence of biologically active substances in vitro, without interference from other factors such as neural or hormonal and etc. [Ole-jnikova V et al., 2015]. The frog's heart is a convenient object of study due to the presence of multiple ion channels (voltage-gated and mechano-sensitive, ligand-sensitive). At the same time, being a cold-blooded animal, frog metabolism is energy efficient, so its heart can be contracted for a long time [Burggren W, Warburton S, 2007].

For *in vitro* studies, a frog's heart was surgically removed after euthanizing the animal with ether. The isolated heart was then placed in a photoelectric device chamber with Ringer's solution for cold-blooded animals (0.65% NaCl, 0.018% KCl, 0.02% CaCl₂, 0.03% Na₂HPO₄, 0.01% NaH₂PO₄, pH = 7.2, t = 18°C).

In the first series of experiments the dose-dependent cardiotropic effects of LPS (Sigma, USA) were studied, identifying the most effective concentration of substance. For this purpose, $10~\mu g/ml$, $20~\mu g/ml$ or $100~\mu g/ml$ dose of LPS were introduced into the incubation medium with Ringer's solution where the isolated heart was located.

In the second series of experiments a pharmacological analysis of the mechanism of LPS action on the pacemaker and contractile functions of the isolated heart was carried out, using a calcium channel blocker (10⁻⁵ *M* verapamil (Sigma, USA)), a potassium channel blocker (10⁻³ *M* aminopyridine (Sigma, USA)), phosphodiesterase (10⁻⁴ *M* theophylline (Sigma, USA)) and Na⁺-K⁺ pumps (10⁻³ *M* ouabaine (Sigma, USA)) in dynamics. The comparative analysis of alone effects of LPS and effects of LPS with blockers was done. A comparative analysis was conducted to evaluate the effects of LPS alone and in combination with blockers.

In the III series of experiments LPS was combined with one of the calcium-regulating hormones. 1-34 active fragment of PTH (Sigma, USA), 1-34 active fragment of parathyroid hormone-related protein (Sigma, USA), vitamin D_3 (Sigma, USA) or calcitonin (CT) (Sigma, USA) were added in different sets of experiments and final concentrations of mentioned hormones in the

incubation medium were close to physiological, 10^{-10} *M*. A comparative analysis was conducted to evaluate the effects of LPS alone and in combination with calcium-regulating hormones.

The registration of heart functional activity (pacemaker rhythm, amplitude of heart contractions) was performed using a specific photoelectric device (LLC BioArt, Armenia), which operates based on the principle of dispersion of the luminous flux. Heart contraction changed the angular distribution of the light beam and led to corresponding changes in the indices of the photodetector.

The semiconductor laser (MOD HLDPM10-650-3, Huey Jann Electronics, China) was used as a radiation source, and a FD-256 silicon (Si) photodiode (Russia) was used to estimate the light intensity. After amplification, the photo-detector signals were subjected to analogue-to-digital conversion (Takfly communications co. Ltd, China) and stored. The sampling time for analogue-to-digital conversion was 10 ms. The custom-developed software (in the LabView environment) allowed visualization and subsequent analysis of the recorded signals. The amplitude and frequency of the frog's heart contractile activity were evaluated. Averaged amplitude and time-frequency data of the contractile activity of the heart were plotted for each series of studies (15-20 animals in each group). To standardize the amplitude distributions of heart functional activity, the initial registration values were set at 100%. The frequency of contractions is expressed in absolute values. The analysis of the recorded signals was carried out in two stages. First, to assess the changes in the amplitude of the heart contractions in dynamics, all values of the investigated parameters were compared with the initial contraction amplitude. Second, to analyze the frequency of heart contractions, the signals were normalized by the calculated current amplitude of contractions and their peak values were distinguished by the amplitude discrimination method.

Statistical analysis of the obtained data was performed by using "Origin 8.5" software, according to Student's t-test. The average value of investigated parameters for each 10-minute interval were compared to those obtained in the first time interval (1-10 min) (p_1). the investigated parameters in different 10-minute intervals were compared to the parameters of the control (I series) or under the influence of LPS alone (II and III series) (p_2).

RESULTS

The goal of the first series of experiments was to determine the effective dose of LPS action on the heart *in vitro*. A significantly negative shift in inotropic parameters was observed at a dose of 10 μ g/ml LPS, characterized by statistically significant changes (p1<0.01, p2<0.001) in subsequent intervals (Table 1). At a concentration of 20 μ g/ml, LP dose of 100 μ g/ml, LPS increased the strength of heart contractions but slowed down the pacemaker rhythm. Based on these findings, we determined that using a dose of 10 μ g/ml would be appropriate for the subsequent series of experiments.

In the second series of experiments, LPS was administered together with one of the blockers indicated in the "Materials and Methods" section. When $10 \,\mu g/ml$ of LPS was injected alone into the incubation medium, the amplitude of contractions of the isolated heart was reduced by an average of 76% from the initial level, and the frequency of the pacemaker rhythm decreased from 48 to 42 beats per minute (Table 2). The viability of the isolated heart decreased from 40 minutes (in control) to 20 minutes (under the influence of LPS) and the isolated heart contractions stopped.

A significant positive shift in the heart rate and amplitude was observed when LPS was combined with verapamil or theophylline, compared to the effects of LPS alone (Table 2). The combination of LPS with aminopyridine did not result in significant changes in these parameters during the first 20 minutes. However, when combined with ouabain, LPS caused a negative shift. The chronotropic index significantly decreased under the influence of LPS combined with verapamil or ouabain, but was maintained for a long time (50 minutes or more) under the influence of LPS and theophylline. The effect of LPS combined with aminopyridine was similar to the effect of LPS alone. The obtained results suggest the involvement of Ca2+-, Na+-K+-ATPase-, and cAMP-dependent mechanisms to varying degrees in the cardiotropic effects (heart contraction amplitude, pacemaker activity) of lipopolysaccharide.

In our previous studies [Ter-Markosyan A et al., 2017] and in literature references [Wang T, 2016; Meyer R et al., 2007; Schavinski A, 2021], it has been shown that the protective/modulatory effects of calcium-regulating hormones (1-34 PTH, 1-34

TABLE 1.

The dose-dependent impact of lipopolysaccharide on the functional activity of isolated heart in dynamics

of isolated heart in dynamics								
Average v	value			Interval				
Substance	<u></u>	1-10min	11-20min	21-30min	31-40min	41-50min		
Amplitude (%)								
Control n=15	%	102.31±6.31	83.78 ± 8.03	66.62 ± 7.37	29.81±1.74			
	p_1		>0.05	< 0.01	< 0.001			
LPS 10 μg/ml n=16	%	57.22±7.8	25.04 ± 3.87	-	-	-		
	$\mathbf{p}_{_{1}}$		< 0.01	-	-	-		
	p_2	< 0.001	< 0.001	-	-	-		
LPS 20 μg/ml n= 15	%	82±5.42	49.15±2.46	38.44±22.01	-	-		
	\mathbf{p}_1		< 0.001	>0.05				
	\mathbf{p}_{2}	< 0.05	< 0.001	>0.05				
LPS100 μg/ml n=15	%	180.78±26.88	182.66±31.82	185.01±39.21	156.44±45.17	157.42±57.04		
	p_1		>0.05	>0.05	>0.05	>0.05		
	p_2	< 0.01	< 0.01	< 0.01	< 0.01			
Rate (beat/min)							
Control	%	50.81±5.75	47.46±5.58	38.27±4.84	43.01±4.17			
n=15	\mathbf{p}_{1}		>0.05	>0.05	>0.05			
	%	48.33±9.43	42.83±3.37					
LPS 10 μg/ml n=16	p_1		>0.05					
11-10	p_2	>0.05	>0.05					
LPS 20 μg/ml n=15	%	50.11±3.93	42.31±7.99	49.72±21.92				
	p_1		>0.05	>0.05				
	p_2	>0.05	>0.05					
LPS 100 μg/ml n=15	%	48.1±6.93	45.5±10.47	30.45±3.98	25.49±3.65	23.8±3.99		
	p_1		>0.05	< 0.05	< 0.01	< 0.01		
	\mathbf{p}_{2}	>0.05	>0.05	>0.05	< 0.01			

Notes: p_1 – index of statistical significance indicating the shift of the investigated parameter in the different intervals compared to the same parameter at 1-10 min; p_2 – index of statistical significance indicating the shift of the investigated parameter in the different intervals compared to the control. The absence of the heart contractions is noted "–". Colored cells show prolonged vitality of the isolated heart compared to the control

PTH-rP, vitamin D_3 , calcitonin) on the heart are mediated through calcium ions and cAMP-dependent mechanisms. Considering the key role of these pathways in the negative effects of LPS on the heart, the third series of experiments assessed the extent to which calcium-regulating hormones could prevent disturbances in the functional activity of the heart.

LPS induced cardiac arrest within 11-20 minutes of the experiment (Table 3). Calcium-regulating hormones prevented the LPS-induced negative shift in the amplitude of heart contractions but had varying effects on the pacemaker rhythm. Under LPS attack, 1-34 PTH maintained the inotropic index and

caused a biphasic change in heart rate. Vitamin D_3 sustained both the pacemaker rhythm and heart contraction amplitude for an extended period. 1-34 PTH-rP had late positive inotropic and chronotropic effects, while calcitonin did not significantly affect the amplitude or pacemaker rhythm. The longest maintenance of isolated heart viability (up to 60-70 minutes) was observed when LPS was combined with either vitamin D_3 or 1-34 PTH.

DISCUSSION

Functional parameters (automatism, rhythm, electromechanical coupling, energy supply, etc.) of the heart largely depend on the balance of extra-

TABLE 2.

The dose-dependent impact of lipopolysaccharide on the functional activity of isolated heart in dynamics

of isolated heart in dynamics								
Average v	alue			Interval				
Substance	1-10min		11-20min	21-30min	31-40min	41-50min		
Amplitude (%)								
LPS 10 μg/ml	%	$57.22\pm7.$	25.04 ± 3.87					
n=16	$\mathbf{p}_{\scriptscriptstyle 1}$		< 0.01					
I DC	%	86.74±8.52	41.89±3.99	28.39±5.31	23.03±4.4			
LPS + verapamil n=20	$\mathbf{p}_{_{1}}$		< 0.001	< 0.001	< 0.001			
	\mathbf{p}_{2}	< 0.05	< 0.01					
	%	65.3±6.18	37.49±9.06	20.38±6.84	17.48±5.82	4.95±1.25		
LPS + theophylline n=17	$\mathbf{p}_{_{1}}$		< 0.05	< 0.001	< 0.001	< 0.001		
11—17	p_2	>0.05	>0.05					
	%	42.25±4.7	5.65±2.08					
LPS + ouabaine n=15	$\mathbf{p}_{_{1}}$		< 0.001					
11-13	\mathbf{p}_2	>0.05	>0.001					
	%	66.16±6.7	39.04±9.3	44.76±14.17				
LPS +aminopyridine n=16	p_1		< 0.05	>0.05				
11–10	p_2	>0.05	>0.05					
Rate (beat/min)			,		,			
LPS 10 μg/ml	%	48.33±9.43	42.83±3.37		'			
n=16	$\mathbf{p}_{_{1}}$		>0.05					
	%	43.19±3.42	31.76±3.54	31.76±6.18	29.77±6.82			
LPS + verapamil n=20	p_1		< 0.05	>0.05	>0.05			
11-20	p_2	>0.05	< 0.05					
	%	51.14±2.79	42.67±2.45	36.63±5.15	39.44±7.9	56.13±4.96		
LPS + + theophylline n=17	p_1		< 0.05	< 0.05	>0.05	>0.05		
11—17	\mathbf{p}_{2}		>0.05					
	%	44.01±3.04	24.83±2.2		-			
LPS + ouabaine n=15	\mathbf{p}_{1}		< 0.001					
11—13	p_2	>0.05	< 0.001					
	%	48.84±4.2	43.91±3.7	37.28±3.9				
LPS +aminopyridie n=16	$\mathbf{p}_{_{1}}$		>0.05	>0.05				
11-10	\mathbf{p}_{2}		>0.05					
Notes a judge of statistical similificance indicating the shift of the impart and a ground to								

Notes: p_1 – index of statistical significance indicating the shift of the investigated parameter in the different intervals compared to the same parameter at 1-10 min; p_2 - index of statistical significance indicating the shift of the investigated parameter in the different intervals compared to alone action of LPS. The absence of the heart contractions is noted "–". Colored cells show prolonged vitality of isolated heart compared to the control

cellular calcium influx, its release from the sarcoplasmic reticulum during the systole, and its outflow from the cytosol during the diastole [Eisner D et al., 2017].

The effect of LPS on the cardiac pacemaker activity is carried out by a Ca²⁺-dependent mechanism, which is confirmed by a more pronounced

negative chronotropic effect observed in the presence of verapamil (Table 2). At the same time, verapamil somewhat neutralized the negative inotropic shift of LPS.

The obtained results coincide with the literature data [Sermsappasuk P et al., 2008], indicating a reduction in the negative inotropic effect in LPS-

TABLE 3.

The dose-dependent impact of lipopolysaccharide on the functional activity of isolated heart in dynamics

of isolated heart in dynamics									
Average value Intervals									
Substance	_	1-10min	11-20min	21-30min	31-40min	41-50min	51-60min	61-70min	71-80min
Amplitude (%)			,	,					
LPS 10 μg/ml	%	57.22±7.8	25.04±3.87	,					
n=16	p_1	p<0.001	p<0.001						
LPS + PTH n=15	%	65.27 ± 4.54	42.7±2.73	26.34±3.63	3 17.98±2.56	13.25±1.85	11.7 ± 2.2	10.34 ± 1.8	
	p_1		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	\mathbf{p}_{2}		< 0.01						
	%	68.72±5.46	43.52±8.2	31.79±7.85	5 35.83±10.3	30.91±11.9			
LPS + PTH rP	p_1		< 0.05	< 0.001	< 0.01	< 0.01			
n=18	p_2	>0.05	< 0.05						
LPS + Vitamin D_3 n=20	%	75.94±4.6	69.7±10.5	60.57±9.67	7 52.82±7.97	49.98±11.46	642.57±11.8	3 37.1±12.7	42.7±16.7
	\mathbf{p}_{1}		>0.05	>0.05	< 0.05	< 0.05	< 0.05	< 0.01	>0.05
<i>n</i> =20	\mathbf{p}_2	< 0.05	< 0.001						
	%	65.9±3.86	34.47±5.26	24.51±4.40	5 18.04±3.9	15.62±2.18			
LPS +Calcitonin <i>n</i> =15	p_1		< 0.001	< 0.001	< 0.001	< 0.001			
n=13	p_2	>0.05	>0.05						
Rate (beat/min)									
LPS 10 μg/ml	%	48.33±9.43	42.83±3.37			1			
n=16	$\mathbf{p}_{_{1}}$		>0.05						
	%	36.81±4.35	29.46±3.79	25.17±4.49	9 23.08±5.14	26.9±4.66	32.09±3.2	31.8±3.72	
LPS + PTH $n=15$	\mathbf{p}_1		>0.05	>0.05					
	p_2	>0.05	< 0.05						
LPS + PTH rP n=18	%	45.37±5.74	31.16±3.2	25.6±6.82	37.84±9.6	37.65±9.07			
	p_1			< 0.05	< 0.05				
	p_2		>0.05	< 0.05					
LPS + Vitamin D_3 n=20	%	44 35+2 48	37.56±3.65	33.74±4.38	3 29.66±4.19	26.9±5.24	24.52±5.5	27.2±5.2	28.9±6.9
	$\mathbf{p}_{\scriptscriptstyle 1}$		>0.05	< 0.05					
	p_2	. 0.05	>0.05						
LPS +Calcitonin n=15	%	49.83±3.1	41.99±3.03	37.04±3.1	36.21±2.01	31.13±1.69			
	p_1		>0.05	< 0.01					
	p_2	0.05	>0.05						

Notes: p_1 – index of statistical significance indicating the shift of the investigated parameter in the different intervals compared to the same parameter at 1-10 min; p_2 - index of statistical significance indicating the shift of the investigated parameter in the different intervals compared to the alone action of LPS. The absence of the heart contractions is noted "–". Colored cells show prolonged vitality of isolated heart compared to the control

perfused rat hearts and a reduced mortality rate in septic mice receiving verapamil for therapeutic purposes [Rattis B et al., 2021].

There is an opinion [Zhang H et al., 2007; Zheng H et al., 2011], that an excessively high level of Ca²⁺ in the cytosol enhances the production of cytokines and leads to the death of cardiomyocytes. The activation of calcium-sensitive re-

ceptors by lipopolysaccharide causes calcium overload, disrupts the electromechanical coupling of the heart and reduces the left ventricular ejection fraction [Joulin O et al., 2009; Wang H et al., 2013]. It has been shown that LPS causes hyperpolarization and reduces the contractility of striated muscle tissue [Vacassenno R et al., 2023], but increases the contractility of smooth muscle cells of

isolated uterine [Zhang L et al., 2015]. Inhibition of L-calcium channels by verapamil or nifedipine prevents the penetration of the genomes of certain viruses (Ebola, SARS-CoV-2) into cardiac cardiomyocytes and reduces the release of endolysosomal apoptotic enzymes [Sakurai Y et al., 2015; Moccia F et al., 2020]. The protective effect of verapamil, which reduces neurotoxicity in models of dopaminergic structures by blocking calcium current in LPS-induced sepsis, is subject to debate [Liu Y et al., 2011].

Numerous literature references [Semmler J et al., 1993; Jin S, Conti M, 2002] indicate that phosphodiesterase inhibitors increase cAMP levels and thereby suppress the synthesis and release of cytokines in tumor cells, improve mitochondrial respiration in septic cardiomyocytes [Neviere R et al., 2016] and prevent organ dysfunction caused by LPS attack [Jin S, Conti M, 2002; Flemming S et al., 2014]. This assumption is supported by a comparative analysis of the curves showing the effects of LPS alone and LPS combined with theophylline, which revealed identical shifts in both amplitude and frequency during the initial 30 minutes (Table 2). Comparing these findings with existing literature data suggests that an elevation in cytosolic cAMP levels in cardiomyocytes mitigates the negative effects of LPS on heart functional activity.

The activation of potassium channels is considered one of the early stages of LPS signaling in macrophage host cells [Seydel U et al., 2001]. The pharmacological blockade of K+-channels with aminopyridine delayed repolarization in cardiomyocytes, expanded the action potential plateau and increase calcium-current [Bellou A et al., 2016], but it may also cause long-QT syndrome [Li X et al., 2017]. In our experiments, no significant differences in the functional parameters of cardiac activity were found under the influence of LPS alone or when combined with aminopyridine.

The most acute functional disorders of the heart were identified when LPS and ouabaine were introduced into the incubation medium. The functional parameters of the heart were sharply suppressed, and the heart viability was reduced to 11-20 minutes. Similar results are presented in the literature [Orellana A et al., 2016; Kobayashi M et al., 2017]. The authors believe that ouabaine enhances macrophage infiltration and facilitates the

release of IL-1β, while also inducing cardiac dysfunction in mice receiving LPS. The phenomenon of pathological cardiac hypertrophy development when Na⁺-K⁺-ATPase is inhibited by lipopolysaccharide and ouabaine has been described [*Wang L et al., 2010*]. At the same time, Wang C et al. (2018) recommend the use of ouabaine to improve lung parameters in LPS-induced lung tissue damage in mice. Ouabaine, widely used in the treatment of chronic heart failure and arrhythmia, has a very controversial effect and numerous side effects [*Whitbeck M et al., 2013*].

Thus, based on the results of these experiments and data presented in the literature, it is assumed that Ca²⁺-ions, cAMP and Na⁺-K⁺-ATPase participate in the effects of lipopolysaccharide on the pacemaker and contractile activity of the heart.

Our previous studies showed the protective effect of the calcium-regulating hormonal system (1-34PTH, 1-34PTH-rP, vitamin D₂) in cases of chronic heart failure and cardiomyopathies of various etiologies [Adamyan S et al., 2021; Ter-Markosyan A et al., 2021; Harutyunyan K et al., 2023]. Present study showed a significant increase in the inotropic index and long-term maintenance of cardiac pacemaker activity when LPS was combined with all calcium-regulating hormonal system hormones, with the exception of calcitonin (Table 3). The cardioprotective effects of these hormones are mediated through the involvement of Ca2+, K+, Na+ ions, protein kinases A and C, Na+-K+-ATPase, Na+-Ca2+-exchanger, and others [Eisner D et al., 2017; Ter-Markosyan A et al., 2017; Goltzman D et al., 2018]. Maintaining the heart contractile function, its left ventricular ejection fraction and other hemodynamic parameters significantly increased the survival of patients in conditions of cytotoxic attacks [Valeanu L et al., 2021].

Intraperitoneal administration of LPS to animals caused disturbances in electrophysiological parameters (HR lengthening of HR and QT intervals, and shortening of the QRS complex), which were mitigated by the administration of the 1-34 active fragment of PTH [Harutyunyan K et al., 2022]. Patients suffering from cardiomyopathy exhibited an increase (within the physiological norm) in concentrations of 1-34 PTH, CT, ionized Ca, phosphates, and HMGB1 in the blood [Harutyunyan K et al., 2023]. Other authors have reported an

elevation in plasma PTH concentration and increased production of PTH-rP in animal hepatocytes during endotoxemia induced by LPS [Funk J et al., 1997; Toribio R et al., 2005].

The modulation of the immune response, inhibition of proliferation and release of lymphokines occurred in PTH-rP stimulation of T-lymphocytes [White J, 2008]. The involvement of PTH-rP in the down-regulation of the inflammatory process in the mouse mesangial cells was revealed [Hochane M et al., 2018]. Depending on the dose subcutaneous injections of PTH improved myocardial contractility, increased left ventricular systolic fraction, and reduced mortality in rats with non-ischemic cardiomyopathy [Wu G et al., 2018]. Mobilization of CD34+/CD45, increased neovascularization and reparative properties of cardiomyocytes were observed when PTH was administered directly into the infarction zone in mice [Zaruba M et al., 2008]. The increase in inotropic and chronotropic parameters by parathyroid hormone and its related protein is discussed in studies by other authors [Brown S et al., 2017; Goltzman D et al., 2018].

Vitamin D_3 is a unique factor for activating innate and adaptive immunity. The hormone suppresses the penetration of pathogens (SARS-COV-2) into the host cells, inhibits the production of cytokines and reduces the risk of developing an inflammatory process [Bilezikian J et al., 2020; Driggin E et al., 2022], normalizes cardiac activity and hemodynamic parameters in chronic heart failure [De la Guía-Galipienso F et al., 2021]. There is an opinion that vitamin D_3 deficiency can cause an escalation of cardiovascular dysfunction [Bilezikian J et al., 2020; Harutyunyan K et al., 2023].

The effect of calcitonin on the heart has been poorly studied. Limited data suggest a dose-dependent suppression of the inotropic and chronotropic activity of isolated rat cardiomyocytes by calcitonin, with more pronounced effects observed in atrial sections compared to ventricular sections

[Chiba S, Himori N, 1977]. At the same time, systemic administration of calcitonin increased mean arterial pressure and caused arrhythmia in rats [Peguero-Rivera A, Corder S, 1992]. Extensive research concerns calcitonin gene-related peptide (CTG-rP), which is synthesized by the atrial cells in response to ischemic heart damage [Kee Z et al., 2018; Wong W, 2020; Schavinski A et al. 2021].

CTG-rP regulates the pacemaker rhythm by paracrine manner, preventing the development of fibrosis [Moreira L et al., heart 2020]. It induces hypocalcaemia, but increases L-calcium current by stimulating adenylyl cyclase in atrial cells [Kee Z et al., 2018]. The participation of CTG-rP in the protection of the myocardium from reperfusion injury and autophagy is assumed [Schavinski A et al. 2021]. CT, but not CTG-rP, was used in our experiments which had no significant effect on the heart rate amplitude and frequency.

Summarizing our results and comparing them with the literature data, it is assumed that the negative inotropic and chronotropic effects of LPS are realized mainly through calcium-, potassium- and cAMP-dependent mechanisms, and calcium-regulating hormones exhibit a protective effect and prevent the negative consequences of LPS attacks on the heart.

CONCLUSION

According to received data, bacterial lipopolysaccharide causes negative inotropic and chronotropic effects and significantly reduces the viability of isolated animal hearts. The mechanism of the cardiotropic effect of lipopolysaccharides involves calcium and potassium ions, Na⁺-K⁺-ATPase and cAMP. The calcium-regulating hormones protect the heart and promote the preservation of its contractile and rhythmogenic functions during LPS-attack. A particularly significant effect is exerted by vitamin D₃, PTH and PTH-rP, which maintain the functional activity of the isolated heart for a long time.

This study was supported by the Science Committee of RA under research project No 21T-3A112.

REFERENCES

- 1. Adamyan SH, Harutyunyan KR, Abrahamyan HT, Khudaverdyan DN, Mkrtchian S, Ter-Markosyan AS (2021). Can the calcium-regulating hormones counteract the detrimental impact of pro-inflammatory damage-associated molecular patterns in the development of heart failure? J Investig Med. 69(6): 1148-1152 DOI: 10.1136/jim-2020-001754
- Arakelyan KP, Sahakyan YS, Hayrapetyan LR, Khudaverdyan DN, Ingelman-Sundberd M, Mkrtchyan S, Ter-Markosyan AS (2007). Calcium regulating peptide hormones and blood electrolytic balance in chronic heart failure. J Regulatory Peptides. 142: 95-100

- 3. Bellou A, Al-Hammadi S, Aburawi EH, Dhanasekaran S, Nemmar A, Oulhaj A., et al (2016). 4-Aminopyridine, A Blocker of Voltage-Dependent K⁺ Channels, Restores Blood Pressure and Improves Survival in the Wistar Rat Model of Anaphylactic Shock. Crit Care Med. 44(11): e1082-e1089 DOI: 10.1097/CCM.000000000000001822
- 4. Bilezikian JP, Bikle D, Hewison M, Lazaretti-Castro M, Formenti AM, Gupta A., et al (2020). Mechanisms in endocrinology: Vitamin D and COVID-19. Eur J Endocrinol. 183(5): R133-R147 DOI: 10.1530/EJE-20-0665
- Blad, S, Welin AK, Kjellmer I., et al (2008).
 ECG and Heart Rate Variability Changes in Preterm and Near-Term Fetal Lamb Following LPS Exposure. Reprod Sci. 15: 572-583 DOI: 10.1177/1933719107314060
- Bowman JD, Surani S, Horseman MA (2017). Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease. Current Cardiol Rev. 13(2): 86-93 DOI: 10.2174/1573403X12666160901145313
- 7. Brown SJ, Ruppe MD, Tabatabai LS (2017). The parathyroid gland and heart disease. Methodist Debakey Cardiovasc J. 13(2): 49-54 DOI: 10.14797/mdcj-13-2-49
- 8. Burggren WW, Warburton S (2007). Amphibians as Animal Models for Laboratory Research in Physiology. ILAR Journal. 48(3): 260-269 DOI: 10.1093/ilar.48.3.260
- 9. Chiba S, Himori N (1977). Effects of salmon calcitonin on SA nodal pacemaker activity and contractility in isolated, blood-perfused atrial and papillary muscle preparations of dogs. Jpn. Heart J. 18(2): 214-220
- 10. De la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H (2021). Vitamin D and cardiovascular health. Clin. Nutr. 40(5): 2946-2957 DOI: 10.1016/j.clnu.2020.12.025
- 11. Deng M, Tang Y, Li W, Wang X, Zhang R, Zhang X, Lu B (2018). The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis. Immunity. 49(4): 740-753 DOI: 10.1016/j.immuni.2018.08.016
- 12. Driggin E, Madhavan MV, Gupta A (2022). The role of vitamin D in cardiovascular disease and COVID-19. Rev. Endocr. Metab. Disord. 23(2): 293-297 DOI: 10.1007/s11154-021-09674-w

- Eisner DA, Caldwell JL, Kistamás K, Trafford AW (2017). Calcium and Excitation-Contraction Coupling in the Heart Circ Res. 121(2): 181-195 DOI: 10.1161/CIRCRESAHA.117.310230
- 14. Esfahani NS, Wu Q, Kumar N, Ganesan LP, Lafuse WP, Rajaram MV (2021). Aging influences the cardiac macrophage phenotype and function during steady state and during inflammation. Aging Cell. 20: Article e13438 DOI: 10.1111/acel.13438
- 15. Flemming S, Schlegel N, Wunder C, Meir M, Baar W, Wollborn J., et al (2014). Phosphodiesterase 4 inhibition dose dependently stabilizes microvascular barrier functions and microcirculation in a rodent model of polymicrobial sepsis. Shock. 41(6): 537-545 DOI: 10.1097/SHK.00000000000000152
- 16. Funk JL, Moser AH, Grunfeld C, Feingold KR (1997). Parathyroid hormone-related protein is induced in the adult liver during endotoxemia and stimulates the hepatic acute phase response. Endocrinology. 138(7): 2665-2673 DOI: 10.1210/endo.138.7.5228
- 17. Gallucci S, Matzinger P (2001). Danger signals: SOS to the immune system. Curr Opin Immunol. 13(1): 114-119 DOI: 10.1016/s0952-7915(00)00191-6
- 18. Germani A, Limana F, Capogrossi MC (2007). Pivotal advances: high-mobility group box 1 protein--a cytokine with a role in cardiac repair. J Leukoc Biol. 81(1): 41-45
- 19. Goltzman D, Mannstadt M, Marcocci C (2018). Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res. 50: 1-13 DOI:10.1159/000486060
- 20. Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi Kh, Johnston TP, Sahebkar A (2022). Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends in Cardiovascular Medicine. 32(8): 525-533 DOI: 10.1016/j.tcm.2021.08.015
- 21. Harutyunyan KR, Abrahamyan HT, Adamyan SH, Khudaverdyan DN, Mkrtchian S, Ter-Markosyan AS (2022a). [The impact of lipopolysaccharides of bacterial origin on the heart functional activity in vivo.] [Published in Russian]. Medicine, science and education. 33: 3-7 DOI: 10.56936/18291775-2022.33-3

- 22. Harutyunyan KR, Abrahamyan HT, Adamyan SH, Mkrtchian S, Ter-Markosyan AS (2023). Calcium-Regulating Hormonal System and HMGB1 in Cardiomyopathies. Endocrine, Metabolic & Immune Disorders Drug Targets. 23(1): 115-121 DOI: 10.2174/18715303 22666220817110538
- 23. Harutyunyan KR, Melkumyan KV, Abrahamyan HT, Adamyan SH, Khudaverdyan DN, Ter-Markosyan AS (2022b). Calcium-regulating hormonal system in cardiac functional activity. The New Armenian Medical Journal. 16(4): 54-63 DOI: 10.56936/18290825-2022.16.4-54
- 24. Hochane M, Raison D, Coquard C, Béraud C, Bethry A, Danilin S., et al (2018). Parathyroid hormone-related protein modulates inflammation in mouse mesangial cells and blunts apoptosis by enhancing COX-2 expression. Am J of Physiol Cell Physiol. 314(2): 242-253 DOI: 10.1152/ajpcell.00018.2017
- 25. Jin SL, Conti M (2002). Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci. USA. 99(11): 7628-7633 DOI: 10.1073/pnas.122041599
- 26. Joulin O, Marechaux S, Hassoun S, Montaigne D, Lancel S, Neviere R (2009). Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care. 13(1): Article R14 DOI: 10.1186/cc7712
- 27. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L., et al (2014). HMGB1 in health and disease. Mol Aspects Med. 40: 1-116 DOI: 10.1016/j. mam.2014.05.001
- 28. Kee Z, Kodji X, Brain SD (2018). The Role of Calcitonin Gene Related Peptide (CGRP) in Neurogenic Vasodilation and Its Cardioprotective Effects. Front. Physiol. 9: Article 1249 DOI: 10.3389/fphys.2018.01249
- 29. Kobayashi M, Usui-Kawanishi F, Karasawa T, Kimura H, Watanabe S, Mise N., et al (2017). The cardiac glycoside ouabain activates NLRP3 inflammasomes and promotes cardiac inflammation and dysfunction. PLoS One. 12(5): Article e0176676 DOI: 10.1371/journal.pone.0176676
- 30. Kuo FY, Lee SP, Cheng J, Wu MC (2023). The direct effect of lipopolysaccharide on an

- isolated heart is different from the effect on cardiac myocytes in vitro. Archives of Medical Science. 19(1): 216-228 DOI: 10.5114/aoms.2019.86976
- 31. Lai SL, Marín-Juez R, Stainier DYR (2019). Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol. Life Sci. 76(7): 1365-1380 DOI: 10.1007/s00018-018-2995-5
- 32. Li X, Shen L, Zhao F, Zou X, He Y, Zhang F., et al (2017). Modification of distinct ion channels differentially modulates Ca²⁺ dynamics in primary cultured rat ventricular cardiomyocytes. Sci Rep. 7: Article 40952 DOI: 10.1038/srep40952
- 33. Liu Y, Lo YC, Qian L, Crews FT, Wilson B, Chen HL., et al (2011). Verapamil protects dopaminergic neuron damage through a novel anti-inflammatory mechanism by inhibition of microglial activation. Neuropharmacology. 60(2-3): 373-380 DOI: 10.1016/j.neuropharm.2010.10.002
- 34. Meyer R, Schreckenberg R, Kretschmer F, Bittig A, Conzelmann C, Grohé C, Schlüter KD (2007). Parathyroid hormone-related protein (PTHrP) signal cascade modulates myocardial dysfunction in the pressure overloaded heart. European Journal of Heart Failure. 9: 1156-1162 DOI: 10.1016/j.ejheart.2007.10.007
- 35. Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P., et al (2020). COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience. 42(4): 1021-1049 DOI: 10.1007/s11357-020-00198-w
- 36. Moreira LM, Takawale A, Hulsurkar M, Menassa DA, Antanaviciute A, Lahiri SK., et al (2020). Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature. 587(7834): 460-465 DOI: 10.1038/s41586-020-2890-8
- 37. Neviere R, Delguste F, Durand A, Inamo J, Boulanger E, Preau S (2016). Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction. Int J Mol Sci. 17(12): Article 2075 DOI: 10.3390/ijms17122075
- 38. Olejnikova V, Novakova M, Provaznik I (2015). Isolated heart models: cardiovascular system

- studies and technological advances. Med Biol Eng Comput. 53(7): 669-678 DOI: 10.1007/s11517-015-1270-2
- 39. Orellana AM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C (2016). Cardiotonic Steroids as Modulators of Neuroinflammation. Front Endocrinol. (Lausanne). 7: Article 10 DOI: 10.3389/fendo.2016.00010
- 40. Peguero-Rivera AM, Corder CN (1992). Hemodynamic effects of calcitonin in the normal rat. Peptides. 13(3): 571-575
- 41. Rathinam V, Russo A, Menoret A, Rabinovich G, Duduskar Sh, Deshmukh S, Vella AT (2019). Alarmin(g) outcomes of intracellular LPS sensing. J Immunol. 202(1): 63.14 DOI: 10.4049/jimmunol.202.Supp.63.14
- 42. Rattis BAC, Freitas AC, Oliveira JF, Calandrini-Lima JLA, Figueiredo MJ, Soave DF., et al (2021). Effect of Verapamil, an L-Type Calcium Channel Inhibitor, on Caveolin-3 Expression in Septic Mouse Hearts. Oxid Med Cell Longev. 2021: Article 6667074 DOI: 10.1155/2021/6667074.
- 43. Raucci A, Di Maggio S, Scavello F, D'Ambrosio A, Bianchi ME, Capogrossi MC (2019). The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol. Life Sci. 76(2): 211-229 DOI: 10.1007/s00018-018-2930-9
- 44. Russo AJ, Vasudevan SO, Méndez-Huergo SP, Kumari P, Menoret A, Duduskar S., et al (2021). Intracellular immune sensing promotes inflammation via gasdermin D-driven release of a lectin alarmin. Nature Immunology. 22: 154-165 DOI: 10.1038/s41590-020-00844-7
- 45. Sakurai Y, Kolokoltsov AA, Chen CC, Tidwell MW, Bauta WE, Klugbauer N., et al (2015). Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science. 347(6225): 995-998 DOI: 10.1126/science.1258758
- 46. Schavinski AZ, Machado J, Morgan HJN, Lautherbach N, Paula-Gomes S, Kettelhut IC, Navegantes LCC (2021). Calcitonin gene-related peptide exerts inhibitory effects on autophagy in the heart of mice. Peptides. 146: Article 170677 DOI: 10.1016/j.peptides.2021.170677
- 47. Schavinski AZ, Machado J, Morgan HJN, Lautherbach N, Paula-Gomes S, Kettel-

- hut IC, Navegantes LCC (2021). Calcitonin gene-related peptide exerts inhibitory effects on autophagy in the heart of mice. Peptides. 146: Article 170677 DOI: 10.1016/j.peptides.2021.170677
- 48. Semmler J, Wachtel H, Endres S (1993). The specific type IV phosphodiesterase inhibitor rolipram suppresses tumor necrosis factor-alpha production by human mononuclear cells. Int. J. Immunopharmacol. 15(3): 409-413 DOI: 10.1016/0192-0561(93)90052-z
- 49. Sermsappasuk P, Abdelrahman O, Weiss M (2008). Cardiac pharmacokinetics and inotropic response of verapamil in rats with endotoxemia. J Pharm Sci. 97(7): 2798-2804 DOI: 10.1002/jps.21021
- 50. Seydel U, Scheel O, Müller M, Brandenburg K, Blunck R (2001). A K+ channel is involved in LPS signaling. J Endotoxin Res. 7(3): 243-247 PMID: 11581578
- 51. Ter-Markosyan AS, Abrahamyan HT, Adamyan SH, Minasyan AV, Harutyunyan KR (2021). Parathyroid hormone prevents the effect of bacterial lipopolysaccharide on the functional activity of the heart. FEBS Open bio. 11(1): p449 DOI: 10.1002/2211-5463.13205
- 52. Ter-Markosyan AS, Harutyunyan KR, Adamyan SH, Khudaverdyan DN (2017). The role of ionic channels and second messengers in the 1-34 parathyroid hormone fragment cardiac effects. FEBS Journal. 284(1): 53-54 DOI: 10.1111/febs 14174@2017
- 53. Toribio RE, Kohn CW, Hardy J, Rosol TJ (2005). Alterations in serum parathyroid hormone and electrolyte concentrations and urinary excretion of electrolytes in horses with induced endotoxemia. J Vet Intern Med. 19(2): 223-231 DOI: 10.1892/0891-6640(2005)19<223:aisph a>2.0.co;2
- 54. Tzeng HP, Fan J, Vallejo JG, Dong JW, Chen X, Houser SR, Mann DL (2008). Negative inotropic effects of high-mobility group box 1 protein in isolated contracting cardiac myocytes. Am J Physiol Heart Circ Physiol. 294: 1490-1496 DOI: 10.1152/ajpheart.00910.2007
- 55. Vacassenno RM, Haddad CN, Cooper RL (2023). Bacterial lipopolysaccharide hyperpolarizes the membrane potential and is antagonized by the K2p channel blocker doxapram.

- Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology. 266: Article 109571 DOI: 10.1016/j.cbpc.2023.109571
- Valeanu L, Bubenek-Turconi SI, Ginghina C, Balan C (2021). Hemodynamic Monitoring in Sepsis-A Conceptual Framework of Macroand Microcirculatory Alterations. Diagnostics (Basel). 11(9): Article 1559 DOI: 10.3390/diagnostics11091559
- 57. Van Linthout S, Tschöpe C (2017). Inflammation Cause or Consequence of Heart Failure or Both? Current Heart Fail. Rep. 14(4): 251-265 DOI: 10.1007/s11897-017-0337-9
- Wang C, Meng Y, Wang Y, Jiang Z, Xu M, Bo L, Deng X (2018). Ouabain Protects Mice Against Lipopolysaccharide-Induced Acute Lung Injury. Med Sci Monit. 24: 4455-4464 DOI: 10.12659/MSM.908627
- 59. Wang HY, Liu XY, Han G, Wang ZY, Li XX, Jiang ZM, Jiang CM (2013). LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol. Cell. Biochem. 379(1-2): 153-159 DOI: 10.1007/s11010-013-1637-3
- 60. Wang LQ, Chen TT, Cai YQ, Xue X, Zhou X, Jin CH (2010). Role of Na(+)-K(+)-ATPase in lipopolysaccharide-induced cardiomyocyte hypertrophy in rats. Nan Fang Yi Ke Da Xue Xue Bao. 30(9): 2059-2062
- 61. Wang TJ (2016). Vitamin D and Cardiovascular Disease. Annual Review of Medicine. 67(1): 261-272
- 62. Whitbeck MG, Charnigo RJ, Khairy P, Ziada K, Bailey AL, Zegarra MM., et al (2013). Increased mortality among patients taking digoxin analysis from the AFFIRM study. Eur Heart J. 34(20): 1481-1488 DOI: 10.1093/eurheartj/ehs348
- 63. White JH (2008). Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun. 76(9): 3837-3843
- 64. Wong W (2020). A more rhythmic heartbeat with calcitonin. Sci. Signal. 13: Article eabf6590 DOI: 10.1126/scisignal.abf6590
- 65. Wu GY, Wu T, Xu BD, Shi YC, Cheng ZY, Zhang X., et al (2018). Effect of parathyroid hormone on cardiac function in rats with cardiomyopathy. Exp Ther Med. 16(4): 2859-2866 DOI: 10.3892/etm.2018.6528

- 66. Yang D, Dai X, Xing Y, Tang X, Yang G, Harrison AG., et al (2022). Intrinsic cardiac adrenergic cells contribute to LPS-induced myocardial dysfunction. Commun Biol. 5: Article 96 DOI: 10.1038/s42003-022-03007-6
- 67. Yang D, Han Z, Oppenheim JJ (2017). Alarmins and immunity. Immunol Rev. 280(1): 41-56 DOI: 10.1111/imr.12577
- 68. Yücel G, Zhao Z, El-Battrawy I, Lan H, Lang S, Li X., et al (2017). Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. Sci Rep. 7(1): Article 2935 DOI: 10.1038/s41598-017-03147-4
- 69. Zaruba MM, Huber BC, Brunner S, Deindl E, David R, Fischer R., et al (2008). Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival. Cardiovasc. Res. 77(4): 722-731 DOI: 10.1093/cvr/cvm080
- 70. Zhai CL, Zhang MQ, Zhang Y, Xu HX, Wang JM, An GP, Wang YY, Li L (2012). Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phosphoJNK/Bax pathway. Acta Pharmacol Sin. 33(12): 1477-1487
- 71. Zhang H, Wang HY, Bassel-Duby R, Maass DL, Johnston WE, Horton JW, Tao W (2007). Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. Am J Physiol Heart Circ Physiol. 292(5): H2408-H2416. DOI: 10.1152/ajpheart.01150.2006
- 72. Zhang L, Wang L, Jiang J, Zheng D, Liu S, Liu C (2015). Lipopolysaccharides upregulate calcium concentration in mouse uterine smooth muscle cells through the T-type calcium channels. International Journal of Molecular Medicine. 35(3): 784-790
- 73. Zheng H, Liu J, Liu C, Lu F, Zhao Y, Jin Z., et al (2011). Calcium-sensing receptor activating phosphorylation of PKCδ translocation on mitochondria to induce cardiomyocyte apoptosis during ischemia/reperfusion. Mol. Cell Biochem. 358(1-2): 335-343 DOI: 10.1007/s11010-011-0984-1

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024). Issue 3

The Journal is founded by Yerevan State Medical University after M. Heratsi.

Rector of YSMU

Armen A. Muradyan

Address for correspondence:

Yerevan State Medical University 2 Koryun Street, Yerevan 0025, Republic of Armenia

Phones:

STATE MEDICAL UNIVERSI

OF

CIAL PUBLICATION

(+37410) 582532 YSMU (+37493 588697 Editor-in-Chief

Fax: (+37410) 582532

E-mail:namj.ysmu@gmail.com, ysmiu@mail.ru

URL:http//www.ysmu.am

Our journal is registered in the databases of Scopus, EBSCO and Thomson Reuters (in the registration process)

Scopus

EBSCO REUTERS

Copy editor: Tatevik R. Movsisyan

Printed in "LAS Print" LLC Director: Suren A. Simonyan Armenia, 0023, Yerevan, Acharyan St. 44 Bulding, Phone: (+374 10) 62 76 12, E-mail: las.print@yahoo.com

Editor-in-Chief

Arto V. Zilfyan (Yerevan, Armenia)

Deputy Editors

Hovhannes M. Manvelyan (Yerevan, Armenia)

Hamayak S. Sisakyan (Yerevan, Armenia)

Executive Secretary

Stepan A. Avagyan (Yerevan, Armenia)

Editorial Board

Armen A. **Muradyan** (Yerevan, Armenia)

Drastamat N. Khudaverdyan (Yerevan, Armenia)

Levon M. Mkrtchyan (Yerevan, Armenia)

Foregin Members of the Editorial Board

Carsten N. Gutt (Memmingen, Germay)

Muhammad MIFTAHUSSURUR (Indonesia)

Alexander Woodman (Dharhan, Saudi Arabia)

Hesam Adin **Atashi** (Tehran, Iran)

Coordinating Editor (for this number)

Mahdi Esmaeilzadeh (Mashhad, Iran)

Editorial Advisory Council

Ara S. **Babloyan** (Yerevan, Armenia)

Aram Chobanian (Boston, USA)

Luciana Dini (Lecce, Italy)

Azat A. **Engibaryan** (Yerevan, Armenia)

Ruben V. **Fanarjyan** (Yerevan, Armenia)

Gerasimos Filippatos (Athens, Greece)

Gabriele Fragasso (Milan, Italy)

Samvel G. Galstyan (Yerevan, Armenia)

Arthur A. Grigorian (Macon, Georgia, USA)

Armen Dz. **Hambardzumyan** (Yerevan, Armenia)

Seyran P. **Kocharyan** (Yerevan, Armenia)

Aleksandr S. **Malayan** (Yerevan, Armenia)

Mikhail Z. Narimanyan (Yerevan, Armenia)

Levon N. Nazarian (Philadelphia, USA)

Yumei **Niu** (Harbin, China)

Linda F. Noble-Haeusslein (San Francisco, USA)

Arthur K. Shukuryan (Yerevan, Armenia)

Suren A. Stepanyan (Yerevan, Armenia)

Gevorg N. **Tamamyan** (Yerevan, Armenia)

Hakob V. **Topchyan** (Yerevan, Armenia)

Alexander **Tsiskaridze** (Tbilisi, Georgia)

Konstantin B. **Yenkoya**n (Yerevan, Armenia)

Peijun **Wang** (Harbin, Chine)

(A)

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024). Issue 3

CONTENTS

- 4. KALMATOV R.K., RAHIM F., AKHUNBAEVA T., TOGUZBAEVA K., DZHUSUPOV K
 CUBN GENE POLYMORPHISMS AND SUSCEPTIBILITY TO TYPE 2 DIABETES VERSUS
 TYPE 1 DIABETES: A SYSTEMATIC REVIEW
- 13. AFROUGHI F., PADYAB Z., SHARIFI M., SALEHNASAB C., AFROUGHI S.

 PREVALENCE AND RISK FACTORS OF GESTATIONAL DIABETES MELLITUS AMONG PREGNANT WOMEN: A CROSS-SECTIONAL STUDY IN SOUTHERN IRAN
- 22. HARUTYUNYAN K.R., ABRAHAMYAN H.T., ADAMYAN S.H., TER-MARKOSYAN A.S.

 MECHANISM OF BACTERIAL LIPOPOLYSACCHARIDE EFFECT ON THE FUNCTIONAL
 ACTIVITY OF THE HEART IN VITRO. CORRECTION OF ITS EFFECTS BY THE CALCIUM
 REGULATING HORMONE SYSTEM
- 35. NOURBAKHSH S.M.K., HASHEMI E., KHEYRI M., BAHADORAM M., KEIKHAEI B., HASSANZADEH S. COMPARISON OF LEPTIN AND FERRITIN LEVELS IN BETA-THALASSEMIA MAJOR AND HEALTHY INDIVIDUALS
- 42. ISMAILOV I. D., KALMATOV R. K., RAHIM F., MOMUNOVA A. A., KILINÇ N.

 COMPARATIVE CHARACTERISTICS OF THE CONDITION OF TISSUE UPPER
 RESPIRATORY TRACT IN CHILDREN WITH RESPIRATORY DISEASES LIVING IN
 KYRGYZSTAN, LOCATED AT DIFFERENT ALTITUDES ABOVE SEA LEVEL
- 51. TADEVOSYAN N.S., POGHOSYAN S.B., MURADYAN S.A., KHACHATRYAN B.G., TER-ZAQARYAN S.H., KIRAKOSYAN G.V., GULOYAN H.A., BABAYAN T.L.
 ENVIRONMENTAL POLLUTION OF SOME FOOTHILL REGIONS OF ARMENIA WITH ORGANOCHLORINE PESTICIDES AND ISSUES OF MORBIDITY
- 60. BARI MD N., OSMAN E.H.A., ALFAKI M.A., ANSARI MD R.
 NONINVASIVE PROTEOMIC BIOMARKER IN DISORDERS OF THE NONALCOHOLIC
 FATTY LIVER
- 68. BARI MD. N., ANSARI MD.R., ALFAKI M.A.

 THE ROLE OF EVOLVING TECHNIQUES AND PROSPECTIVE IMPLICATIONS OF BIOMARKERS IN LIVER DISEASE
- 82. Mohammad I., Khan M.S., Ansari M.R.
 GINGER REVITALIZED: EXPLORING THE MODERN APPLICATIONS OF ZINGIBER
 OFFICINALE IN MEDICINE AND BEYOND
- 93. Mohammed I., Osman E.H.A., Alfaki M.A.M.

 ANTI-NEURODEGENERATIVE ACTIVITY OF THE PROBIOTIC STRAIN LACTOBACILLUS ACIDOPHILUS
- 99. POYIL M.M., SHAMNA K. P., RAJA K.

 COMBATING MULTI-DRUG RESISTANCE: POTENTIALS OF KALANCHOE PINNATA
 EXTRACTS AGAINST BACTERIAL PATHOGENS
- 106. QAMER S., BAKAR I. ALSANOUSI N.

 ANTIOXIDANT DRUGS FROM HYDRO-ETHANOLIC FLORAL EXTRACTS OF IMPATIENS
 BALSAMINA L.: AN IN VITRO ANALYSIS
- 112. SAAD AHMED O., SAAD AHMED S., TALIB DHEYAB R.
 A COMPREHENSIVE EXERCISE PROGRAM IMPROVES FOOT ALIGNMENT IN CHILDREN WITH FLEXIBLE FLAT FOOT
- 119. BQLEIN A. S.

 COMPREHENSIVE REVIEW OF LABOR PAIN MANAGEMENT, PERINEAL TEARS, AND
 EPISIOTOMY COMPLICATIONS: A FOCUS ON PREVENTION AND THE ROLE OF NURSES