

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024), Issue 4 p. 46-54

DOI: https://doi.org/10.56936/18290825-4.v18.2024-46

DIAGNOSTICS, SURGICAL TREATMENT, AND REHABILITATION OF PATIENTS WITH COMPLEX FRACTURED HAND INJURIES

Tukeshov S.K.^{1*}, Baysekeev T.A.¹, Choi E.D.², Kulushova G.A.², Nazir M.I.², Jaxymbayev N.B.³, Turkmenov A.A.¹

Akhunbaev Kyrgyz State Medical Academy, Bishkek, Kyrgyz Republic
 Royal Metropolitan University, Bishkek, Kyrgyz Republic
 Kyrgyz State Medical Institute of Post-Graduate Training and Continuous Education named after S.B. Daniyarov, Bishkek, Kyrgyz Republic

Received 07.03.2024; Accepted for printing 10.11.2024

ABSTRACT

The article presents a comprehensive review of the diagnosis, surgical treatment, and rehabilitation of patients with complex hand fractures, with a particular focus on phalangeal fractures. It highlights the prevalence of such injuries, especially in low- and middle-income countries, and underscores the significant socio-economic burden they impose due to healthcare costs and loss of productivity.

The review compares various diagnostic tools, including conventional radiography, multislice computed tomography, and cone beam computed tomography, emphasizing the latter's potential for reducing radiation exposure while maintaining diagnostic accuracy. It also explores the use of automated diagnostic systems supported by deep learning techniques like convolutional neural networks, though noting their limited clinical application due to cost and accessibility.

In terms of treatment, the article discusses both conservative and surgical approaches, with a detailed examination of external fixation methods, particularly the Ilizarov method and newer dynamic distraction external fixators. The Wide-Awake Local Anesthesia No Tourniquet technique is highlighted for its effectiveness and cost-efficiency in surgical settings. Rehabilitation strategies, including mirror therapy, robotic exoskeletons, and the use of 3D printing for custom-fit splints, are also reviewed, offering insights into improving functional outcomes post-surgery.

As a result of the review, it is concluded that despite the availability of various diagnostic and treatment methods, further research is necessary to establish more effective, evidence-based protocols, particularly in resource-limited settings.

This review serves as a valuable resource for microsurgeons and healthcare providers, emphasizing the need for continued innovation and research to improve the quality of care for patients with complex hand fractures.

KEYWORDS: hand injuries, diagnostics, microsurgery, rehabilitation.

Introduction

Complex fractured hand injuries, such as fractures of the phalangeal bones, represent a significant and urgent medical challenge. These fractures

are the second most common fractures of the upper extremities [Ramlatchan S et al., 2020], with an incidence rate ranging from 10% [Karl J et al., 2015;

CITE THIS ARTICLE AS:

Tukeshov S.K., Baysekeev T.A., Choi E.D. et al. (2024). Diagnostics, surgical treatment, and rehabilitation of patients with complex fractured hand injuries. The New Armenian Medical Journal, vol.18(4), 46-54; https://doi.org/10.56936/18290825-4.v18.2024-46/

Address for Correspondence:

Sultan K. Tukeshov Akhunbaev Kyrgyz State Medical Academy 92 Akhunbaev Street, Bishkek 720020, Kyrgyz Republic Tel.: 0 (312) 66-22-61

E-mail: stukeshov@mymail.academy

Verver D et al., 2017] to 18% [Gao Y et al., 2017], depending on the study and population. The prevalence and impact of these injuries are especially critical in countries with lower socio-economic development, where healthcare systems are often under strain. Indeed, more than 50% of traumatic injuries worldwide occur in low- and middle-income countries, further exacerbating the burden on these health systems [Bazarbaeva S et al., 2021; Landaeta F et al., 2020].

A systematic review from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 [Crowe C et al., 2020] revealed that in countries with low and middle socio-demographic levels, hand injury rates have been steadily increasing, with some regions experiencing up to a 25% rise. This surge in hand injuries not only poses a medical problem but also has significant economic implications. Hand injuries represent a substantial economic burden, with high costs associated with healthcare and productivity losses. A systematic review and meta-analysis by O'Hara et al. (2020) demonstrated that 40.5% of patients with hand injuries did not return to their previous employment after 12 months, with an average work absence of over 100 days, leading to a substantial loss of earnings amounting to \$14,621. These figures illustrate the broader socio-economic impact of hand injuries, which extends beyond the immediate medical costs to include significant losses in productivity and quality of life for affected individuals.

Further compounding the economic burden, the direct and indirect costs associated with these injuries are considerable. Özgen et al. (2021) conducted a retrospective analysis of 59 patients and found that the average direct cost per patient was \$726.00±641.87, while the total amount of indirect costs was \$2,776.93±1,619.00. Remarkably, indirect costs accounted for 79% of the total expenses [Özgen M et al., 2021]. This highlights the need for effective and efficient treatment protocols that can minimize both the physical and economic toll of hand injuries, particularly in regions where healthcare resources are already stretched thin.

Several studies have highlighted the challenges associated with the diagnosis and treatment of complex fractured hand injuries. Comparison of cone beam computed tomography and multislice computed tomography in assessing extremity fractures, finding that while cone beam computed tomography may reduce radiation exposure, its diagnostic accuracy remains under review. Similarly, automated diagnostic systems supported by deep learning techniques, such as Convolutional Neural Networks like VGG-16, GoogLeNet, and ResNet-50, have shown varying degrees of accuracy, sensitivity, and specificity in identifying fractures of the phalanx [Dubreuil T et al., 2019; Galanopoulos I, Vynichakis G, 2019; Krastman P et al., 2020]. However, these technologies are still evolving, and their implementation in clinical practice is limited by factors such as cost, accessibility, and the need for further validation.

Given these challenges, there is an urgent need for further research with a convincing degree of evidence to clarify the most effective strategies for diagnosing, treating, and rehabilitating patients with complex hand fractures. Such research is particularly vital for improving the quality of medical and surgical services in countries with low socio-demographic levels, where the burden of traumatic injuries is most acutely felt. By optimizing existing national algorithms and developing evidence-based protocols, healthcare systems can better address the needs of this patient population and mitigate the significant socio-economic impact of these injuries.

The purpose of this work is to review the current state of the problem of diagnosis, surgical treatment, and rehabilitation of patients with complex fractured hand injuries. This review aims to identify gaps in the existing knowledge and practice, especially in low-resource settings, and to propose recommendations for improving patient outcomes through evidence-based approaches. In doing so, it seeks to contribute to the ongoing efforts to enhance the quality and accessibility of care for patients with these challenging and debilitating injuries.

MATERIAL AND METHODS

During the analysis of modern literature, a pool of 1,100 sources was formed, 65 of which (using keywords) were included in the final pool. Out of the 65 sources used, taken from PubMed, Scopus, Web of Science, and Google Scholar, 30 sources were published in the last 5 years from 2019 to 2023.

RESULTS AND DISCUSSION

The studies reviewed show that hand injuries are predominantly associated with occupational activities [Stewart A et al., 2017], particularly among manual laborers and in agriculture [Dębski T, Noszczyk B, 2021], with a significant portion resulting in severe skeletal damage [Lin D et al., 2012; Shrihari V, 2016] as per the Hand Injury Severity Score [Campbell D, Kay S, 1996].

Conventional radiography is a first-line imaging tool for assessing metacarpal and finger fractures.

Zhao et al. (2019) found in a study of 842 patients that ultrasound has a high diagnostic efficacy for detecting hand fractures, with a sensitivity of 91%, specificity of 96%, positive likelihood ratio of 20.66, negative likelihood ratio of 0.09, and a diagnostic odds ratio of 231.17.

An important measure is to supplement the physical diagnosis of fractures with instrumental visual diagnostic methods. In a systematic study by Krastman et al. (2020) sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the physical examination for the diagnosis of fractures of the phalangeal and metacarpal bones ranged from 26 to 55%, 13-89%, 45-76%, 41-77% and 63-75%, respectively. Visualization of fractures of the metacarpal and finger showed sensitivity, specificity, accuracy, positive predictive value, and negative predictive value in the range from 73 to 100%, 78-100%, 70-100%, 79-100%, and 70-100%, respectively.

Currently, multislice computed tomography outperforms conventional radiography in displaying intraarticular fracture lines and in accurately measuring fractures, which is crucial for preoperative planning. This superiority is due to its capability for isotropic multiplanar high-resolution reconstruction and the thinness of the imaging slices. However, the use of computed tomography raises concerns about radiation exposure. Introducing cone beam computed tomography technology could be a viable solution to reduce radiation doses.

Cone beam computed tomography has been proposed as an alternative to multislice computed tomography for imaging to assess limb injuries. Posadzy et al. (2018) in a sample of 10,000 patients showed that the diagnosis of a complex finger fracture performed using cone beam computed tomography cost 67.33 euros per patient, gave 9.08

years of life adjusted for quality-adjusted life year and received an incremental cost-effectiveness ratio equaling 29.94 euros/quality-adjusted life year and net monetary benefit equaling 9.07 euros. The use of multislice computed tomography for diagnostics cost 106.23 euros, gave 8.18 quality-adjusted life year, incremental cost-effectiveness ratio equaling 371.15 euros/quality-adjusted life year, and net monetary benefit equaling 8.09 euros at a threshold of 30,000 euros per quality-adjusted life year. The incremental net monetary benefit is 1.17 for the cone beam computed tomography strategy and 0.19 for the multislice computed tomography strategy.

Automated diagnostic systems have long supported doctors in interpreting medical images, with recent enhancements due to deep learning techniques [Denisova D et al., 2023]. According to Rawat W. and Wang Z. (2017), convolutional neural networks such as VGG-16, GoogLeNet, and ResNet-50 have been applied, achieving varying degrees of accuracy, sensitivity, and specificity in identifying fractures of the phalanx and normal hands. Specifically, VGG-16 achieved 84.0% accuracy, GoogLeNet 81.7%, and ResNet-50 79.4%. Treatment of hand injuries, whether conservative or surgical, depends on the type, location, and stability of the fracture.

CONSERVATIVE TREATMENT

In Sahin et al. (2021), a study involving 39 patients evaluated through Crawford criteria showed no significant difference in Michigan Hand Outcome Questionnaire scores between surgical and conservative treatments. The surgical group results were 30.4% excellent, 13% good, 8.7% fair, and 8.7% poor. The conservative group had 25% excellent, 25% good, 37.5% fair, and 12.5% poor outcomes. Subsequent studies found no statistically significant differences in outcomes between conservative and surgical approaches for hand injuries. Khatua et al. (2020) reported no significant differences in total range of motion or Belesky scores among 60 patients. Kremer et al. (2022) found that 74% of 261 fracture patients benefited from conservative treatment, suitable for stable fractures, while 26% required surgery for unstable fractures, supported by Lögters et al. (2018). Byrne et al. (2020) observed positive outcomes with conservative treatment, including minimal pain and functional motion preservation. Held et al. (2013) demonstrated effective conservative management of proximal phalanx fractures using dorsal plaster, maintaining inclination angles under 15° and minimal shortening. Lastly, El-Shishtawy et al. (2019) noted significant improvements in sensory outcomes, range of motion, complications, aesthetic outcomes, and patient satisfaction with conservative treatments, particularly enhanced by platelet gel for faster healing and recovery.

SURGICAL TREATMENT

The primary objective of surgical intervention for hand injuries is to restore anatomy and ensure stability, allowing for early movement. Treatment typically involves realigning the joint, securing the fracture using internal or external fixation devices, and promoting early mobilization. Effective anatomical reduction and stable fixation are crucial to prevent complications such as chronic pain, stiffness, deformity, and early-onset degenerative arthritis. Surgical options are categorized into internal and external fixation methods.

EXTERNAL FIXATORS

External fixators are of great importance in the surgical treatment of complex finger injuries. In comminuted and intraarticular fractures, an open reposition with internal fixation simply using Kirschner wires (K-wires) usually leads to the impossibility of early mobilization due to the smaller size of bone fragments or lower fixation strength caused by a local ligament. It is also not ideal when there is a risk of infection due to open wounds and when it is necessary to avoid further damage to soft tissues. Consequently, in complex fractured hand injuries, external fixation is much more optimal than internal osteosynthesis [El-Shaer A et al., 2015; Jafari D, Ajvadi A, 2017; Hamilton L, 2018]. Since internal fixation includes osteosynthesis using plates and screws, these methods cannot be optimal for these hand injuries.

External fixation is the use of pins and/or thin wires implanted percutaneously into the bone, connected from the outside of the body by clamps, rods, and other metal or composite devices; it is used to stabilize fractures and reconstruct complex deformities.

There are various options for external fixators.

EXTERNAL FIXATORS ACCORDING TO THE ILIZAROV METHOD

Shikhaleva N.G. (2018) analyzed the results of treatment of 274 patients with open fractures of the hand bones, including complete and incomplete am-

putations of the hand segments, for whom a mini Ilizarov apparatus was used to fix the hand bones. The most common cause of hand injuries was work on wood and metalworking machines (59.6%). When conducting a study of the function of an injured limb on the disabilities of the arm, shoulder, and hand scale during fixation of damaged bones with the mini Ilizarov apparatus, the function indicators in the group of patients with multiple fractures ranged from 17.5 to 75.7 points (on average (68.7 \pm 7.2) points). The terms of fixation of bone fragments by the mini Ilizarov apparatus ranged from 37 to 109 days. The longest period of consolidation was observed in the group of patients with intraarticular fractures without a bone defect. Rehabilitation measures after removing the device averaged (22.6 \pm 2.5) days. An additional stage of inpatient treatment was required in 21 patients (7.6%). The performed reconstructive surgeries allowed for achieving positive results in most clinical cases. The occurrence of complications in the postoperative period was noted in 87 (31.7%) patients.

Thus, external fixation using the Ilizarov method is effective for complex fractured hand injuries. However, it should be noted that this fixation option is still mainly used for fixing the long bones of the lower extremities.

In a study by Wang et al. (2019), 20 patients were treated with a new dynamic distraction external fixator for an average of 3 months. The results showed good joint contour on X-rays, 92% postoperative grip strength compared to the contralateral side, and satisfactory motion ranges in the proximal interphalangeal joint. Ahangar et al. (2021) and Kodama et al. (2018) further supported the effectiveness of dynamic external fixators in treating proximal interphalangeal joint fractures, with most patients achieving full or near-full range of joint movements and minimal postoperative pain. Similarly, studies by Kastenberger et al. (2020) and Abou Elatta et al. (2017) demonstrated high patient satisfaction and good functional outcomes using different external fixator designs, with most patients returning to daily activities without significant restrictions.

Innovative handmade external fixators, such as those described by Jafari D. and Ajvadi A. (2017) and Zhang et al. (2018), have shown excellent functional outcomes and patient satisfaction, pro-

viding an economical solution particularly beneficial in developing countries. Rashed et al. (2020) introduced a simple syringe fixator technique, yielding promising results in multiple complex hand fractures. These studies highlight the evolving techniques in external fixation, aiming to improve patient outcomes while minimizing complications and costs.

Speaking about the various options for external fixation in complex fractured hand injuries, an important innovative technique called Wide-Awake Local Anesthesia No Tourniquet should be noted.

WIDE-AWAKE LOCAL ANESTHESIA NO TOURNIQUET

Introduced more than ten years ago by Lalonde D.H. (2017), the Wide-Awake Local Anesthesia No Tourniquet method has gained popularity, and the range of its surgical applications has significantly expanded. This correlates with positive results and patient satisfaction. Local anesthetics, hemostatic agents, and alkalizes are applied to the site of surgery by local injection. It is believed that the alkalizing agent (lidocaine buffered with 8.4% sodium bicarbonate NaHCO3 in a ratio of 5:1) acts beneficially to reduce the pain associated with infiltration with a local anesthetic, and additionally enhances the hemostatic effect of adrenaline.

Georgieva et al. (2022) studied the benefits of the Wide-Awake Local Anesthesia No Tourniquet method in hand surgery, highlighting its advantages in reducing hospital stays and staff requirements. Patients undergoing surgery with this method experienced significantly less pain both intraoperatively and postoperatively compared to those without it. Additionally, economic analyses by Rhee et al. (2017) and Ayhan et al. (2018) demonstrated substantial cost savings with Wide-Awake Local Anesthesia No Tourniquet. Rhee et al. found that using this method saved \$393,100 in a military setting, while Ayhan et al. reported lower costs for Wide-Awake Local Anesthesia No Tourniquet compared to other anesthesia methods in hand surgeries. Tahir et al. (2020) also noted lower hospitalization costs with such method, emphasizing its cost-effectiveness. These studies collectively suggest that Wide-Awake Local Anesthesia No Tourniquet is a highly effective and economically advantageous technique for managing complex hand injuries.

PREVENTION OF INFECTIOUS COMPLICATIONS WITH THE USE OF EXTERNAL FIXATORS

In the surgical treatment of phalangeal fractures using K-wires, understanding the risk of infection associated with open versus closed methods is crucial for optimizing patient rehabilitation. Research highlights that infections are more prevalent with open K-wires than those buried under the skin [Ridley T et al., 2017]. Despite some orthopedic surgeons lacking a clear preference for open or closed K-wires, a significant portion favors open K-wires because they generally require less frequent removal.

Further investigations into the cost-effectiveness of these methods revealed that exposed Kwires are less expensive compared to buried ones. Addressing postoperative infections, studies have shown that preventive measures, such as using betadine-soaked alcohol pads as bandages, can effectively mitigate infection risks without the need for additional interventions [Ivanishchuk P, Kovalev A, 1993; Kovalev A, Ivanishchuk P, 1999; Kovalev A et al., 2020]. Moreover, recent research suggests that titanium K-wires may offer a better resistance to biofilm growth compared to other materials, presenting a potentially safer option in terms of infection control. These findings contribute to the ongoing discussion on the best practices for using K-wires in hand surgery, with a focus on reducing infection risks and improving economic efficiency.

REHABILITATION PHYSICAL EXERCISES

Jun et al. (2021) implemented a protocol of controlled active physical exercises in the early postoperative period for patients with fractures of the proximal phalanx and metacarpal bone. This included painless active stretching in various positions for 3 to 5 weeks post-surgery. By 6 to 12 weeks, a significant improvement in the range of motion was observed, with the total angle of inclination of the affected finger exceeding 230° in some patients after 12 weeks. Follow-up X-rays showed successful bone fusion within 20 weeks.

Gutiérrez-Espinoza et al. (2017) observed that controlled home exercise programs significantly improved pain and functional outcomes in patients over 60, with notable differences in the Patient-Rated Wrist Evaluation scores at 6 weeks and 6 months.

Miller et al. (2016) compared limited synergistic rehabilitation exercises to traditional unrestricted exercises in postoperative care of proximal phalanx fractures. The study found no significant differences in improvements between the two groups in terms of active finger extension, total range of motion, strength, pain, and difficulty with hand activities up to 12 weeks post-surgery. This indicates that rehabilitation exercises, whether limited or unrestricted, yield similar outcomes after the surgical repair of phalangeal fractures.

MIRROR THERAPY

Mirror therapy is an effective non-drug treatment that leverages the observation of an intact limb's movements in a mirror to activate mirror neurons in the premotor cortex, enhancing hand function. Systematic reviews [Tofani M et al., 2022] and randomized controlled trials [Rostami H et al., 2013; Yun D, Kim M, 2019] indicate that mirror therapy significantly improves hand function and reduces pain in the short and long term, although it shows limited benefits for hand dexterity and range of motion.

ROBOTIC EXOSKELETONS

Robotic exoskeletons are increasingly crucial in rehabilitating patients with complex finger injuries. Innovations like the virtual exoskeletal device 'Exok'ab' have shown promising results in enhancing range of motion and overall rehabilitation outcomes, offering both passive and active rehabilitation modes [Sandoval-Gonzalez O et al., 2016]. These devices provide an alternative to traditional physiotherapy, potentially improving the efficiency of rehabilitation processes.

3D PRINTING IN REHABILITATION

3D printing introduces significant advancements

in creating external fixators for complex finger injuries. A study involving a new, cost-effective external fixator made with 3D-printed clamps demonstrated that these devices provide comparable biomechanical stability to traditional fixators [Arulmozhi R et al., 2018]. The 3D clamps were modeled using SolidWorks 2017 and printed on a Markforged Onyx One 3D printer (Boston, Massachusetts) using the fused deposition modeling technique. This study included three different test configurations: axial compression, anterior-posterior bending, and medial-lateral bending. This innovation is particularly beneficial for developing countries, offering a financially accessible solution without compromising on quality and effectiveness.

CONCLUSION

Despite the available methods and promising approaches, many of them remain the subject of discussion and require additional research with a convincing degree of evidence. This is especially true in developing countries, where access to modern methods may be limited.

The presented review of the literature on complex fractured hand injuries not only showed current trends and approaches in medical practice but also emphasized the importance of further research and development of more effective methods of diagnosis, surgical treatment, and rehabilitation. These data have theoretical and practical significance, warning medical specialists, especially microsurgeons, against using new methods without sufficient scientific justification. Only through further research and collective efforts can we achieve an improvement in the quality of medical and surgical services provided for patients with this type of injury.

REFERENCES

- 1. Abou Elatta MM, Assal F, Basheer HM, El Morshidy AF, Elglaind SM, Abdalla MA (2017). The use of dynamic external fixation in the treatment of dorsal fracture subluxations and pilon fractures of finger proximal interphalangeal joints. Journal of Hand Surgery (European Volume). 42(2): 182-187 DOI: 10.1177/1753193416674155
- 2. Ahangar P, Rahimnia A, Mokhtari M, Rahimnia A (2021). Treatment of fracture-dislocations of proximal interphalangeal joint by ap-
- plying of dynamic mini external fixator: clinical and radiographic results. The Archives of Bone & Joint Surgery. 9(6): 695-701 DOI: 10.22038/ABJS.2021.54249.2709
- 3. Arulmozhi RS, Vaidya M, Poojalakshmi MG, Kumar DA, Anuraag K (2018). 3D design and printing of custom-fit finger splint. Biomedical Engineering Applications Basis and Communications. 30(5): 1850032 DOI: 10.4015/S1016237218500321

- 4. Ayhan E, Ozdemir E, Gumusoglu E, Cevik K, Eskandari MM (2018). The rise of wide awake hand surgery contribution from Turkey. Hand and Microsurgery. 7: 125-134 DOI: 10.5455/handmicrosurg.299709
- 5. Bazarbaeva S, Dinmukhamedova A, Tleubergenova G, Rakhimzhanova Z, Sembekova K, Karbayeva S, Kuandykova E (2021). Morphofunctional and hematological characteristics of health in students from the northern and southern regions of Kazakhstan. Open Access Macedonian Journal of Medical Sciences. 9(A): 753-759 DOI: 10.3889/oamjms.2021.6434
- 6. Byrne B, Jacques A, Gurfinkel R (2020). Non-surgical management of isolated proximal phalangeal fractures with immediate mobilization. Journal of Hand Surgery (European Volume). 45(2): 126-130 DOI: 10.1177/1753193419881086
- 7. *Campbell DA, Kay SP (1996)*. The hand injury severity scoring system. Journal of Hand Surgery. 21(3): 295-298 DOI: 10.1016/s0266-7681(05)80187-1
- 8. Crowe CS, Massenburg BB, Morrison SD., et al (2020). Global trends of hand and wrist trauma: a systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study. Injury Prevention. 26(1): i115-i124 DOI: 10.1136/injuryprev-2019-043495
- 9. Dębski T, Noszczyk BH (2021). Epidemiology of complex hand injuries treated in the Plastic Surgery Department of a tertiary referral hospital in Warsaw. European Journal of Trauma and Emergency Surgery. 47(5): 1607-1612 DOI: 10.1007/s00068-020-01312-5
- Denisova D, Strandstrem E, Akhmetshin E, Nikolenko D (2023). Efficiency of various forms of simulation training in the training of medical professionals. European Journal of Contemporary Education. 12(3): 788-796 DOI: 10.13187/ejced.2023.3.788
- 11. Dubreuil T, Mouly J, Ltaief-Boudrigua A, Martinon A, Tilhet-Coartet S, Tazarourte K, Pialat JB (2019). Comparison of CBCT and multislice computed tomography in the assessment of extremity fractures. Journal of Computer Assisted Tomography. 43(3): 372-378 DOI: 10.1097/RCT.000000000000000843

- 12. El-Shaer AF, El-Deen AFS, El-Deen Abu Hussein AS, Neenaa HA (2015). Results of management of recent fractures of phalanges of the hand by a mini external fixator. Menoufia Medical Journal. 28(4): 965-970
- 13. El-Shishtawy KA, Mahmoud WH, Mousa GI, Ayad HM (2019). Functional and aesthetic outcome of fingertip injuries' management. The Egyptian Journal of Plastic and Reconstructive Surgery. 43(3): 549-555 DOI: 10.21608/ejprs.2020.68218
- 14. Galanopoulos I, Vynichakis G (2019). A bridging: distraction external fixation for a severely comminuted fracture of the middle phalanx. A case report. Cureus. 11(2): e4007 DOI: 10.7759/cureus.4007
- 15. Gao Y, Wang Q, Zhu H, Xu Z (2017). Timing for surgical stabilization with K-wires after open fractures of proximal and middle phalangeal shaft. Scientofic Reports. 7(1): 11359 DOI: 10.1038/s41598-017-11918-2
- 16. Georgieva G, Srbov B, Nikolovska B, Tusheva S, Jovanovska K., et al (2022). WALANT as an optimal approach in hand surgery during pandemics. Prague Medical Report. 123(2): 88-94 DOI: 10.14712/23362936.2022.9
- 17. Gutiérrez-Espinoza H, Rubio-Oyarzún D, Olguín-Huerta C, Gutiérrez-Monclus R, Pinto-Concha S, Gana-Hervias G (2017). Supervised physical therapy vs home exercise program for patients with distal radius fracture: A single-blind randomized clinical study. Journal of Hand Therapy. 30(3): 242-252 DOI: 10.1016/j.jht.2017.02.001
- 18. Hamilton LC (2018). The acute management of unstable intra-articular fractures of the base of the middle phalanx: a systematic review. The Journal of Hand Surgery (Asian-Pacific Volume). 23(4): 441-449 DOI: 10.1142/S2424835518300037
- 19. Held M, Jordaan PW, Laubscher M, Singer M, Solomons M (2013). Conservative treatment of fractures of the proximal phalanx: an option even for unstable fracture patterns. Hand Surgery. 18(2): 229-234 DOI: 10.1142/S0218810413500287
- 20. Ivanishchuk PP, Kovalev AV (1993). [The effect of the fluid medium on the completeness of skin restoration in rats] [Published in Russian]. Morfologiya. 105(11-12): 78-81

- 21. *Jafari D, Ajvadi A (2017)*. A novel handmade external fixator for phalangeal and metacarpal fractures. Shafa Orthopedic Journal. 4(1): e8352
- 22. Jun D, Bae J, Shin D, Choi H, Kim J, Lee M (2021). Controlled active exercise after open reduction and internal fixation of hand fractures. Archives of Plastic Surgery. 48(1): 98-106 DOI: 10.5999/aps.2020.01739
- 23. Karl JW, Olson PR, Rosenwasser MP (2015). The epidemiology of upper extremity fractures in the United States 2009. Journal of Orthopaedic Trauma. 29(8): e242-e244 DOI: 10.1097/bot.000000000000012
- 24. Kastenberger T, Kaiser P, Keller M, Schmidle G, Gabl M, Arora R (2020). Clinical and radiological midterm outcome after treatment of pilonoidal fracture dislocations of the proximal interphalangeal joint with a parabolic dynamic external fixator. Archives of Orthopaedic and Trauma Surgery. 140(1): 43-50 DOI: 10.1007/s00402-019-03275-8
- 25. Khatua J, Nanda DP, Panigrahi R, Maharaj RC (2020). Comparison of conservative and operative management for unstable extra-articular proximal phalanx fracture of hand: a prospective study. Journal of Orthopaedics and Spine. 8: 103-112
- 26. Kodama A, Sunagawa T, Nakashima Y, Shinomiya R, Hayashi Y, Ochi M, Adachi N (2018). Joint distraction and early mobilization using a new dynamic external finger fixator for the treatment of fracture-dislocations of the proximal interphalangeal joint. Journal of Orthopaedic Science. 23(6): 959-966 DOI: 10.1016/j.jos.2018.07.013
- 27. Kovalev AV, Ivanishchuk PP (1999). [Partial regeneration of the tail tip of newborn rats in a liquid medium] [Published in Russian]. Ontogenez. 30(1): 47-50
- 28. Kovalev AV, Kholmogorskaya OV, Korenkova MV (2020). Structural dynamics of skin regeneration after thermal burns in controlled water environment (experimental study). Systematic Reviews in Pharmacy. 11(12): 1564-1567 DOI: 10.31838/srp.2020.12.230
- 29. Krastman P, Mathijssen NM, Bierma-Zeinstra SMA, Kraan G, Runhaar J (2020). Diagnostic accuracy of history taking, physical examination and imaging for phalangeal, metacarpal

- and carpal fractures: a systematic review update. BMC Musculoskeletal Disorders. 21(1): 12 DOI: 10.1186/s12891-019-2988-z
- 30. Kremer L, Frank J, Lustenberger T, Marzi I, Sander AL (2022). Epidemiology and treatment of phalangeal fractures: conservative treatment is the predominant therapeutic concept. European Journal of Trauma and Emergency Surgery. 48(1): 567-571 DOI: 10.1007/s00068-020-01397-y
- 31. Lalonde DH (2017). Conceptual origins, current practice, and views of wide awake hand surgery. Journal of Hand Surgery (European Volume). 42(9): 886-895 DOI: 10.1177/1753193417728427
- 32. Landaeta FJ, Shiozawa JN, Erdman A, Piazza C (2020). Low cost 3D printed clamps for external fixator for developing countries: a biomechanical study. 3D Printing in Medicine. 6(1): 31 DOI: 10.1186/s41205-020-00084-3
- 33. Lin DC, Chang JH, Shieh SJ, Tsai FH, Lee YL (2012). Prediction of hand strength by hand injury severity scoring system in hand injured patients. Disability and Rehabilitation. 34(5): 423-428 DOI:10.3109/09638288.2011.607550
- 34. Lögters TT, Lee HH, Gehrmann S, Windolf J, Kaufmann RA (2018). Proximal phalanx fracture management. HAND. 13(4): 376-383 DOI: 10.1177/1558944717735947
- 35. Miller L, Crosbie J, Wajon A, Ada L (2016). No difference between two types of exercise after proximal phalangeal fracture fixation: a randomised trial. Journal of Physiotherapy. 62(1): 12-19 DOI: 10.1016/j.jphys.2015.11.006
- 36. O'Hara NN, Isaac M, Slobogean GP, Klazinga NS (2020). The socioeconomic impact of orthopaedic trauma: a systematic review and meta-analysis. PLoS One. 15(1): e0227907 DOI: 10.1371/journal.pone.0227907
- 37. Özgen M, Merve Aydoğan A, Uygur A, Armağan O, Berkan F, Mutlu F (2021). Rehabilitation cost share and cost analysis of traumatic hand injuries: Our single-center results. Turkish Journal of Physical Medicine and Rehabilitation. 67(3): 308-314 DOI: 10.5606/tftrd.2021.5457
- 38. Posadzy M, Desimpel J, Vanhoenacker F (2018). Cone beam CT of the musculoskeletal system: clinical applications. Insights into Imaging. 9: 35-45 DOI: 10.1007/s13244-017-0582-1

- 39. Ramlatchan SR, Pomerantz LH, Ganti L, Lee WK, Delk GT (2020). Phalangeal fracture secondary to hammering one's finger. Cureus. 12(7): e9313 DOI: 10.7759/cureus.9313
- 40. Rashed RE, Fouaad AA, Hefny AM (2020). Management of phalangeal fractures by syringe external fixators. Minia Journal of Medical Research. 31(2): 102-107
- 41. Rawat W, Wang Z (2017). Deep convolutional neural networks for image classification: a comprehensive review. Neural Computation. 29(9): 2352-2449 DOI: 10.1162/NECO_a_00990
- 42. Rhee PC, Fischer MM, Rhee LS, McMillan H, Johnson AE (2017). Cost savings and patient experiences of a clinic-based, wide-awake hand surgery program at a military medical center: a critical analysis of the first 100 procedures. The Journal of Hand Surgery. 42(3): e139-147 DOI: 10.1016/j.jhsa.2016.11.019
- 43. Ridley TJ, Freking W, Erickson LO, Ward CM (2017). Incidence of treatment for infection of buried versus exposed Kirschner wires in phalangeal, metacarpal, and distal radial fractures. The Journal of Hand Surgery. 42(7): 525-531 DOI: 10.1016/j.jhsa.2017.03.040
- 44. Rostami HR, Arefi A, Tabatabaei S (2013). Effect of mirror therapy on hand function in patients with hand orthopaedic injuries: a randomized controlled trial. Disability and Rehabilitation. 35(19): 1647-1651 DOI: 10.3109/09638288.2012.751132
- 45. Sahin A, Demirel E, Cepni S, Tahta M (2021). Comparison of conservative and extension block pinning methods in the treatment of bony mallet finger injuries. Hand and Microsurgery. 10: 169-176 DOI: 10.5455/handmicrosurg.52553
- 46. Sandoval-Gonzalez O, Jacinto-Villegas JM, Herrera-Aguilar I, Portillo-Rodiguez O, Tripic-chio P., et al (2016). Design and development of a hand exoskeleton robot for active and passive rehabilitation. International Journal of Advanced Robotic Systems. 13(2): 66 DOI: 10.5772/62404
- 47. Shikhaleva NG (2018). [Treatment of patients with open hand injury using the Ilizarov method of transosseous osteosynthesis] [Published in Russian]. Voprosy rekonstruktivnoi i plasticheskoi khirurgii. 3(66): 48-55
- 48. Shrihari V (2016). Spectrum of hand injuries and their management at a tertiary care hospi-

- tal using the hand injury scoring system. International Surgery Journal. 3(4): 1761-1766 DOI: 10.18203/2349-2902.isj20163554
- 49. Stewart A, Biddulph G, Firth GB (2017). The aetiology of acute traumatic occupational hand injuries seen at a South African state hospital. The South African Orthopaedic Journal. 16(4): 49-53
- 50. Tahir M, Chaudhry EA, Zaffar Z, Anwar K, Mamoon MAH., (2020). Fixation of distal radius fractures using wide-awake local anaesthesia with no tourniquet (WALANT) technique: a randomized control trial of a costeffective and resource-friendly procedure. Bone and Joint Research. 9(7): 429-439 DOI: 10.1302/2046-3758.97.BJR-2019-0315.R1
- 51. Tofani M, Santecchia L, Conte A, Berardi A, Galeoto G, Sogos C, Petrarca M, Panuccio F, Castelli E (2022) Effects of mirror neurons-based rehabilitation techniques in hand injuries: a systematic review and meta-analysis. International Journal of Environmental Research and Public Health. 19(9): 5526 DOI: 10.3390/ijerph19095526
- 52. Verver D, Timmermans L, Klaassen RA, van der Vlies CH, Vos DI, Schep NWL (2017). Treatment of extra-articular proximal and middle phalangeal fractures of the hand: a systematic review. Strategies in Trauma and Limb Reconstruction. 12(2): 63-76 DOI: 10.1007/s11751-017-0279-5
- 53. Wang HZ, Zhao JY, Zhang ZS (2019). A novel dynamic distraction external fixator for proximal interphalangeal joint fracture dislocation. Journal of International Medical Research. 47(4): 1628-1635 DOI: 10.1177/0300060519826821
- 54. Yun DE, Kim MK (2019). Effects of mirror therapy on muscle activity, muscle tone, pain, and function in patients with mutilating injuries: a randomized controlled trial. Medicine. 98(17): e15157 DOI: 10.1097/MD.00000000000015157
- 55. Zhang X, Shao X, Zhang Z, Zhang G, Yu Y, Wang L, Lyu L (2018). Cemented K-wire fixation for the treatment of shaft fractures of middle phalanges. Injury. 49(2): 351-358 DOI: 10.1016/j.injury.2017.10.012
- 56. Zhao W, Wang G, Chen B, Xiao J, Sun X., et al (2019). The value of ultrasound for detecting hand fractures. Medicine. 98(44): e17823 DOI: 10.1097/MD.000000000017823

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024). Issue 4

The Journal is founded by Yerevan State Medical University after M. Heratsi.

Rector of YSMU

Armen A. Muradyan

Address for correspondence:

Yerevan State Medical University 2 Koryun Street, Yerevan 0025, Republic of Armenia

Phones:

(+37410) 582532 YSMU (+37493 588697 Editor-in-Chief

Fax: (+37410) 582532

E-mail:namj.ysmu@gmail.com, ysmiu@mail.ru

URL:http//www.ysmu.am

Our journal is registered in the databases of Scopus, EBSCO and Thomson Reuters (in the registration process)

Scopus

S EBSCO REUTERS

Copy editor: Tatevik R. Movsisyan

Printed in "LAS Print" LLC Director: Suren A. Simonyan Armenia, 0023, Yerevan, Acharyan St. 44 Bulding, Phone: (+374 10) 62 76 12, E-mail: las.print@yahoo.com

Editor-in-Chief

Arto V. Zilfyan (Yerevan, Armenia)

Deputy Editors

Hovhannes M. **Manvelyan** (Yerevan, Armenia) Hamayak S. **Sisakyan** (Yerevan, Armenia)

Executive Secretary

Stepan A. Avagyan (Yerevan, Armenia)

Editorial Board

Armen A. Muradyan (Yerevan, Armenia)

Drastamat N. Khudaverdyan (Yerevan, Armenia)

Levon M. Mkrtchyan (Yerevan, Armenia)

Foregin Members of the Editorial Board

Carsten N. Gutt (Memmingen, Germay)
Muhammad Miftahussurur (Indonesia)
Alexander Woodman (Dharhan, Saudi Arabia)

Coordinating Editor (for this number)

Hesam Adin **Atashi** (Tehran, Iran)

Editorial Advisory Council

Mahdi Esmaeilzadeh (Mashhad, Iran)

Ara S. Babloyan (Yerevan, Armenia)

Aram Chobanian (Boston, USA)

Luciana **Dini** (Lecce, Italy)

Azat A. Engibaryan (Yerevan, Armenia)

Ruben V. Fanarjyan (Yerevan, Armenia)

Gerasimos Filippatos (Athens, Greece)

Gabriele **Fragasso** (Milan, Italy)

Samvel G. Galstyan (Yerevan, Armenia)

Arthur A. Grigorian (Macon, Georgia, USA)

Armen Dz. Hambardzumyan (Yerevan, Armenia)

Seyran P. **Kocharyan** (Yerevan, Armenia)

Aleksandr S. **Malayan** (Yerevan, Armenia)

Mikhail Z. Narimanyan (Yerevan, Armenia)

Levon N. Nazarian (Philadelphia, USA)

Yumei Niu (Harbin, China)

Linda F. Noble-Haeusslein (San Francisco, USA)

Arthur K. Shukuryan (Yerevan, Armenia)

Suren A. **Stepanyan** (Yerevan, Armenia)

Gevorg N. **Tamamyan** (Yerevan, Armenia)

Hakob V. **Topchyan** (Yerevan, Armenia)

Alexander **Tsiskaridze** (Tbilisi, Georgia)

Konstantin B. Yenkoyan (Yerevan, Armenia)

Peijun Wang (Harbin, Chine)

a

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 18 (2024). Issue 4

CONTENTS

- 4. ABDRAMANOV K.A., KOKOEV E.B., ABDRAMANOV A.K., ARZIBAEVA P.M., ALISHEROV R.T.
 DYNAMICS OF THE LEVEL OF AMINO-TERMINAL FRAGMENT OF PRO-BRAIN
 NATRIURETIC PEPTIDE IN PATIENTS WITH ATRIAL SEPTAL DEFECT LIVING AT HIGH
 ALTITUDE AT DIFFERENT STAGES OF DEFECT CORRECTION
- 12. KIRAKOSYAN E.V., NAZARENKO T.A., TROFIMOV D.YU., PAVLOVICH S.V., SUKHIKH G.T. UNEXPLAINED INFERTILITY: CLINICAL CHARACTERISTICS OF COUPLES AND EMBRYOLOGICAL FEATURES OF IN VITRO FERTILIZATION PROGRAMS
- 25. HOVHANNISYAN A.H., BAGHDASARYAN E.G., BAGHDASARYAN A.G., HARUTYUNYAN L.G., GRIGORYAN S.V., KHAN S., PANDIT D., ASOYAN V.A.

 THE CHALLENGES OF TREATMENT OF PATIENT WITH VIRAL HEPATITIS C AND BRUCELLOSIS:
- 31. SADUAKAS A.Y., KURAKBAYEV K.K., ZHAKUBAYEV M.A., MATKERIMOV A.ZH., SHAMSHIYEV A.S., KHANSHI MEAD, ABILKHANOV Y.Y., MAKKAMOV R.O., ERKINBAYEV N.N., KOZHAMKUL A.ZH.

 OUTCOME COMPARISON OF CAROTID ENDARTERECTOMY AND CAROTID ARTERY STENTING IN PATIENTS WITH EXTRACRANIAL CAROTID ARTERY STENOSIS: ONE-HOSPITAL-BASED RETROSPECTIVE STUDY
- 37. SAROYAN G.E., MANUKYAN R.R., OHAN G.G., TER-STEPANYAN M.M.
 GROUP B STREPTOCOCCUS IN PREGNANCY, EPIDEMIOLOGICAL PECULIARITIES OF EARLY AND LATE ONSET STREPTOCOCCAL INFECTIONS IN NEWBORNS
- 46. Tukeshov S.K., Baysekeev T.A., Choi E.D., Kulushova G.A., Nazir M.I., Jaxymbayev N.B., Turkmenov A.A.

 DIAGNOSTICS, SURGICAL TREATMENT, AND REHABILITATION OF PATIENTS WITH COMPLEX FRACTURED HAND INJURIES
- 55. YAVROYAN ZH.V., HAKOBYAN N.R., HOVHANNISYAN A.G., GEVORGYAN E.S.
 CISPLATIN AND DEXAMETHASONE SEPARATE AND COMBINED ACTION ON LIPID PEROXIDATION IN NUCLEAR FRACTIONS OF RAT BRAIN AND KIDNEY CELLS
- 67. Shojaei S., Hanafi M.G., Sarkarian M., Fazelinejad Z.

 PROGNOSTIC FACTORS FOR ENLARGED PROSTATE IN HEALTHY MEN'S ADULTS: A
 CROSS-SECTIONAL STUDY
- 73. BAYKOV A.V., HOVHANNISYAN H.A.

 PRIORITIZING COMMUNICATION SKILLS IN THE ARMENIAN UNDERGRADUATE
 MEDICAL EDUCATION SYSTEM
- 84. KARDOONI M., NIKAKHLAGH S., SALMANZADEH S., MIRMOMENI G., SADEGH ZADEH DIMAN S.
 RISING INCIDENCE OF MUCORMYCOSIS IS A NEW PANIC CHALLENGE IN SOUTHWEST
 OF IRAN DURING COVID-19 PANDEMIC: ASSOCIATED RISK FACTORS AND
 PREVENTIVE MEASURES
- 91. Masharipova A., Nurgaliyeva N., Derbissalina G., Blaževičiene A. EVIDENCE-BASED PRACTICE IN PALLIATIVE CARE NURSING
- 98. Karrar Alsharif M.H., Elamin A.Y., Almasaad J.M., Bakhit N.M., Alarifi A., Taha K.M., Hassan W.A., Zumrawi E.

USING CHATGPT TO CREATE ENGAGING PROBLEM-BASED LEARNING SCENARIOS IN ANATOMY: A STEP-BY-STEP GUIDE

- 107. MARDIYAN M.A., DUNAMALYAN R.A., SAKANYAN G.H., SARGSYAN A.V., SAHAKYAN A.A., MKRTCHYAN S.A., SHUKURYAN A.K., GALSTYAN H.G.
 INTERRELATIONS BETWEEN SITUATIONAL AND PERSONAL ANXIETY AND QUALITY OF LIFE DOMAINS
- 114. VARDANYAN G.R.

 HEALTH RISKS OF SHIFT WORK FOR SERVICEMEN: PREVENTION AND REDUCTION STRATEGIES
- 122. ANDRADE-ROCHA F.T., CARDONA MAYA W.D.

 THE STRONG NEGATIVE IMPACT OF VARICOCELE ON SPERM MORPHOLOGY AND INFERTILITY: A CASE REPORT