

THE NEW ARMENIAN MEDICAL JOURNAL

Volume19 (2025), Issue 2, p.91-97

DOI: https://doi.org/10.56936/18290825-2.v19.2025-91

EVALUATION OF MENSTRUAL CYCLE CHANGES AMONG WOMEN IN SHAHREKORD DURING THE COVID-19 PANDEMIC

ASGARI M.¹, MOEZZI M.², JAFARZADEH L.¹*, BANITALEBI S.³

- ¹Department of Obstetrics and Gynecology, Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
- ² Department of Community Medicine, School of Medicine, Social Health Determinate, Shahrekord University of Medical Sciences, Shahrekord, Iran
- ³ Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran

Received 16.05.2025; Accepted for printing 28.03.2025

ABSTRACT

The COVID-19, a global pandemic, has affected populations worldwide and caused various health issues. This study aimed to evaluate the effects of COVID-19 on changes in the menstrual cycle.

Materials and methods. In this cross-sectional study included 314 women aged 18 to 45 residing in Shahrekord City, Iran, between 2022 and 2023. A researcher-designed questionnaire was used to collect data on demographic characteristics, vaccination history, COVID-19 infection history, and menstrual cycle patterns. Data was gathered via social media. After collection, the data were entered into SPSS version 22 and analyzed using descriptive and analytical statistical methods.

Results and discussion. Among patients, 62.7% of participants reported no change in menstrual bleeding volume after contracting COVID-19. In comparison, only 23% of individuals reported an increase or decrease in their bleeding volume after the infection. Regarding duration of menstruation, 71.3% of participants had no change in the duration of their menstruation after contracting COVID-19. There was also a significant difference in the volume of menstrual bleeding (P=0.005), duration of menstruation (P=0.006), spotting (P=0.013), interval between cycles (P=0.0001), menstrual pain (P=0.001), and premenstrual symptoms (P=0.0001).

Conclusion. The findings of the present study show that the severity of COVID-19 is significantly associated with alteration in the menstrual cycle.

Keywords: Menstruation, menorrhagia, COVID-19, vaccine, shahrekord

Introduction

The COVID-19 pandemic is the result of a virus belonging to the Coronaviridae family, a group of single-stranded RNA viruses. This coronavirus, the seventh known member of its family, typically infects animals such as birds and mammals, of-

ten resulting in mild respiratory illnesses like the common cold in humans. However, certain coronaviruses can lead to severe outbreaks in human populations [Ahmed SF et al., 2020]. COVID-19 symptoms can range from mild to severe and can

CITE THIS ARTICLE AS:

Asgari M., Moezzi M., Jafarzadeh L., Banitalebi S. (2025). Evaluation Of Menstrual Cycle Changes Among Women In Shahrekord During The Covid-19 Pandemic; The New Armenian Medical Journal, vol.19 (2), 91-97; https://doi.org/10.56936/18290825-2.v19.2025-91

Address for Correspondence:

Lobat Jafarzadeh, Associate Professor

Obstetrics and Gynecology Department, Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Kashani Boulevard, Shahrekord, Chaharmahal and Bakhtiari Province, Iran Tel.: (+98) 9133163701

E-mail:lobatjafarzadehskums@gmail.com, lobatjafarzadeh@gmail.com

vary widely among individuals. Common symptoms include fever, persistent cough, muscle aches or myalgia, tachycardia and headache. Some patients may also experience gastrointestinal issues such as diarrhea, nausea, and vomiting. Respiratory symptoms are prevalent, often manifesting as cough, dyspnea, chest pain, and sputum production. Other symptoms may include sore throat, nasal congestion, rhinorrhea, and fatigue. Additionally, it may result in anosmia and ageusia. In more severe cases, it may lead to hemoptysis (coughing up blood), skin rashes, and neurological symptoms, including impaired consciousness and seizures [Wang Y et al., 2020; Hassan SA et al., 2020]. In addition, COVID-19 imposes heavy healthcare costs on the society, mainly related to hospital beds per day [Gholipour K et al., 2023]. Some studies suggest that women who contracted COVID-19 have experienced changes in their menstrual cycles, including a worsening of premenstrual symptoms, higher levels of irregular periods, amenorrhea, and an increase in menorrhagia [Lebar V et al., 2022; Sharp GC et al., 2022]. Moreover, women with COVID-19 have experienced more ovarian injury, such as a reduction in ovarian reserve and reproductive endocrine function [Ding T et al., 2021]. Recently, public concerns have emerged about potential disruptions to menstrual cycles due to COVID-19 vaccines, contributing to issues related to menstrual health, vaccine hesitancy, and anxieties about the possible effect of the vaccine on fertility [Payne LA et al., 2024; Sualeh M et al., 2022]. Some women have reported menstrual irregularities following vaccination, such as menorrhagia, frequent bleeding episodes (metrorrhagia or polymenorrhea), and even postmenopausal bleeding. One possible underlying factor may be vaccine-induced thrombocytopenia [Merchant H,2021]. Despite the ongoing publication of new research on COVID-19, the limited studies addressing the relationship between COVID-19 and menstrual health highlights a significant gap in medical research in this area. Hence, the current study was designed to determine menstrual cycle changes in women of Shahrekord City during the COVID-19 pandemic in 2021-2022.

MATERIALS AND METHODS

STUDY DESIGN AND POPULATION: This research was carried out using a cross-sectional study design. The target population included women aged 18 to 45 with natural menstrual cycles, residing in Shahrekord, Iran, from 2022 to 2023. The inclusion criteria specified that participants had to be women aged between 18 and 45 who were not currently taking hormonal medications, thyroid drugs, or oral contraceptives. Additionally, if vaccinated, participants must have received at least two doses of the same vaccine. Women with no prior history of hematologic disorders, polyps, or similar health issues were eligible for the study. On the other hand, the exclusion criteria ruled out pregnant or breastfeeding women, those with a history of corticosteroid use, individuals diagnosed with diabetes, smokers, and women with known mental health disorders.

SAMPLE SIZE AND SAMPLING METHOD: To estimate a proportion in a cross-sectional study, the sample size can be determined using the following formula:

$$n = \frac{Z^2 \times P \times (1-P)}{d^2}$$

Where: Confidence Level (Z): 95%, so Z = 1.96Estimated Proportion (p): if unknown, use p = 0.5Margin of Error (d): 5% (0.05)

The final sample size would be approximately 384. However, due to a slightly higher margin of error or different assumptions for p, a total of 314 participants were ultimately included in the study. The sampling method was convenience sampling.

DATA COLLECTION METHOD AND QUESTION- NAIRE: A preliminary questionnaire was designed and tested in a pilot study with 50 eligible participants (who were excluded from the main study). After analyzing the responses, faculty members from obstetrics, social medicine, and infectious diseases revised the questionnaire by removing, modifying, or adding specific questions. The revised questionnaire was then reviewed for face validity by three faculty members and tested for reliability. Face validity was confirmed by the same three faculty members. Reliability was assessed using the split-half method (Guttman split-half coefficient). The reliability coefficient was 0.8, indicating very good internal consistency.

STUDY PROCEDURE: Following approval from the Research and Technology Deputy and after obtaining the necessary permits, eligible women aged 18 to 45 were recruited according to inclusion criteria. The electronic questionnaire was created on Porsline. To ensure inclusion criteria were met, exclusion criteria were embedded within the questionnaire; responses that met any exclusion criteria were excluded during data analysis. The finalized, researcher-designed questionnaire contained 40 questions, covering demographic information, vaccination history, COVID-19 infection history, and menstrual cycle characteristics. It was distributed online via social media platforms such as WhatsApp and Instagram. Prior to participation, individuals received an explanation of the purpose of the study and the questionnaire content. During data analysis, 99 participants were excluded due to incomplete responses or meeting exclusion criteria. After collecting all responses, those not meeting inclusion criteria (e.g., those using hormonal or thyroid medications, age outside 18-45, or having certain health histories) were also excluded. The remaining data were entered into SPSS version 26 for descriptive and analytical statistical analysis.

Data analysis: The data were analyzed using SPSS software (version 26). Continuous variables were presented as mean \pm standard deviation, while categorical variables were expressed as frequencies and percentages. The chi-square test was used, with a significance level of P <0.05.

RESULTS AND DISCUSSION

A total of 314 women participated, with a mean age of 21.32 ± 15.7 years. In this study, 74.8% of participants were married, 22.6% were single, and the rest were either divorced or widowed. The majority of participants (52.2%) were housewives, and 58.6% had a university-level education. Most of the women (35.7%) used natural methods of contraception, and 35% had no history of pregnancy (Table 1).

In this study, 92.7% of the participants had received the COVID-19 vaccine. Regarding CO-VID-19 infection, 44.6% of the participants were infected before receiving the vaccine, 25.8% after receiving the vaccine, and 29.6% had been infected in both situations. Concerning the frequency of COVID-19 infection, the majority of participants

TABLE 1. Frequency distribution of marital status, occupation, education level, contraception method, and pregnancy history among the study participants

Widowed Divorced 2 0.6 1.9 Divorced 6 1.9 Occupation Self-employed 34 10.8 Housewife 164 52.2 Employee 75 23.9 Student Student 41 13.1 University Education High School Diploma 80 25.5 Below High School 80 25.5 Method No contraception (not sexually active) 77 24.5 Sexually active Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Tubal ligation Number of Pregnancies 0 110 35.0 Tubal ligation 22 7.0 Tubal ligation 1 2 79 25.2 Tubal ligation 25.5 Tubal ligation 2 79 25.2 Tubal ligation 25.5 Tubal ligation 2 79 25.2 Tubal ligation 22 7.0 Tubal ligation	pregnancy instory among the study participants						
Single 71 22.6 Widowed 2 0.6 Divorced 6 1.9 Occupation Self-employed 34 10.8 Housewife 164 52.2 Employee 75 23.9 Student 41 13.1 Level of Education 184 58.6 High School Diploma 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 79 25.2 3 40 12.7		Variable	Frequency	Percentage			
Marital Status Widowed Divorced 2 0.6 1.9 Divorced 6 1.9 Occupation Self-employed Housewife Housewife Employee 75 23.9 Student 164 52.2 Employee 75 23.9 Student 41 13.1 Level of Education High School Diploma Below High School Diploma Below High School South Sexually active) 80 25.5 No contraception (not sexually active) 77 24.5 Intrauterine device Natural School Sexually active 15 4.8 Natural School Sexually active 15 4.8 Number of Pregnancies 0 110 35.0 Number of Pregnancies 79 25.2 3 40 12.7		Married	235	74.8			
Widowed Divorced 2 0.6 1.9 Divorced 6 1.9 Occupation Self-employed 34 10.8 Housewife 164 52.2 Employee 75 23.9 Student Student 41 13.1 University Education High School Diploma 80 25.5 Below High School 80 25.5 Method No contraception (not sexually active) 77 24.5 Sexually active Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Tubal ligation Number of Pregnancies 0 110 35.0 Tubal ligation 22 7.0 Tubal ligation 1 2 79 25.2 Tubal ligation 25.5 Tubal ligation 2 79 25.2 Tubal ligation 25.5 Tubal ligation 2 79 25.2 Tubal ligation 22 7.0 Tubal ligation	Marital Status	Single	71	22.6			
Self-employed 34 10.8 Housewife 164 52.2 Employee 75 23.9 Student 41 13.1 Level of Education High School Diploma 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Contraceptive Method Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 10 110 35.0 10 110 35.0 2 79 25.2 3 40 12.7		Widowed	2	0.6			
Occupation Housewife 164 52.2 Employee 75 23.9 Student 41 13.1 Level of Education High School Diploma 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 0 110 35.0 1 80 25.5 3 40 12.7		Divorced	6	1.9			
Coccupation Employee 75 23.9 Student 41 13.1 Level of Education High School Diploma 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Contraceptive Method Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 0 110 35.0 1 80 25.5 3 40 12.7	Occupation	Self-employed	34	10.8			
Employee 75 23.9 Student 41 13.1 13.1		Housewife	164	52.2			
Level of Education University Education 184 58.6 High School Diploma 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 0 110 35.0 1 80 25.5 3 40 12.7		Employee	75	23.9			
Level of Education High School Diploma Below High School 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Contraceptive Method Intrauterine device 15 4.8 Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 0 110 35.0 1 80 25.5 3 40 12.7		Student	41	13.1			
Cation High School Diploma 80 25.5 Below High School 50 15.9 No contraception (not sexually active) 77 24.5 Contraceptive Intrauterine device 15 4.8 Method Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 110 35.0 1 80 25.5 3 40 12.7	Level of Edu-	University Education	184	58.6			
Below High School 50 15.9 No contraception (not sexually active) Intrauterine device 15 4.8 Method Natural 112 35.7 Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 1 80 25.5 3 40 12.7		High School Diploma	80	25.5			
Sexually active Sexually active Intrauterine device 15 4.8	Cation	Below High School	50	15.9			
Method Natural Condom 112 35.7 28.0 Condom Tubal ligation 22 7.0 22.0 Number of Pregnancies 1 80 25.5 25.2 25.2 3 40 12.7			77	24.5			
Condom 88 28.0 Tubal ligation 22 7.0 Number of Pregnancies 1 80 25.5 2 79 25.2 3 40 12.7	Contraceptive	Intrauterine device	15	4.8			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Method	Natural	112	35.7			
Number of Pregnancies $\begin{array}{c cccc} 0 & 110 & 35.0 \\ \hline 1 & 80 & 25.5 \\ \hline 2 & 79 & 25.2 \\ \hline 3 & 40 & 12.7 \\ \hline \end{array}$		Condom	88	28.0			
Number of Pregnancies $\frac{1}{2}$ $\frac{80}{25.5}$ $\frac{25.5}{3}$ $\frac{25.5}{40}$ $\frac{12.7}{12.7}$		Tubal ligation	22	7.0			
	Number of Pregnancies		110	35.0			
		1	80	25.5			
		2	79	25.2			
4 or more 5 1.6		3	40	12.7			
. 91 111010		4 or more	5	1.6			

had been infected only once (46.5%), while the rest had been infected two or more times. The severity of infection among participants was categorized as mild in 28.3%, moderate in 47.1%, severe in 6.4%, a combination of mild and moderate in 15.3%, and a combination of moderate and severe in 2.9% (Table 2).

Based on the findings in Table 3, 62.7% of participants reported no change in menstrual bleeding volume after contracting COVID-19, while only 23% of individuals reported either an increase or decrease in their bleeding volume after the infection. Regarding duration of menstruation, 71.3% of participants reported no change in duration of menstruation after contracting COVID-19. Spotting after COVID-19 infection was reported by only 12.4% of participants. In this study, 66.9% of individuals had no change in the menstrual cycle interval after contracting COVID-19, while 16.9% reported a variation in cycle length. Menstrual pain

TABLE 2. s related to

Frequency distribution of variables related to COVID-19 vaccination status, infection timing, infection frequency, and severity of illness

	Variable	Frequency	Percentage
Vaccine	Yes	291	92.7
received	No	23	7.3
Infection	Yes (before vaccination)	140	44.6
	Yes (after vaccination)	81	25.8
	Both (before and after)	93	29.6
Frequency of infection	Once	146	46.5
	Twice	116	36.9
	Three times	25	8.0
	More than three times	27	8.6
Severity of infection	Mild	89	28.3
	Moderate	148	47.1
	Severe (hospitalized)	20	6.4
	Mild and Moderate	48	15.3
	Moderate and Severe	9	2.9

after COVID-19 infection remained unchanged for 65.3% of participants, whereas 20.1% reported an increase in pain. Symptoms before menstruation were unchanged for 58.3% of participants, while 28.6% reported an increase in premenstrual symptoms. Regarding menstrual changes, 30.9% of participants experienced changes in their menstrual cycle after contracting COVID-19 and receiving the vaccine. Regarding menstrual complications, 47.5% of participants stated that they developed menstrual issues after their first COVID-19 infection. In this study, 31.2% of participants believed that changes in their menstrual cycle were associated with the severity of COVID-19 infection.

Regarding the relationship between menstrual disorders and the severity of COVID-19, as shown in Table 3, there is a significant difference in various menstrual characteristics following CO-VID-19 infection, based on the severity of the disease. These include volume of menstrual bleeding (P=0.005), duration of menstruation (P=0.006), spotting (P=0.013), interval between menstrual cycles (P=0.0001), menstrual pain (P=0.001), and premenstrual symptoms (P=0.0001).

This study was designed to determine menstrual cycle changes in women of Shahrekord City during the COVID-19 pandemic during 2021-2022. COVID-19 infection was associated with signifi-

cant changes in menstrual characteristics, including bleeding volume, duration of menstruation, and incidence of spotting, interval between cycles, menstrual pain, and premenstrual symptoms. In this regard, the study by Taşkaldıran I et al., 2020 showed that out of 241 women with COVID-19, 86 (35.7%) reported experiencing various changes in their menstrual patterns during the first three cycles following the infection. They also reported a range of menstrual irregularities, which varied in type and severity among participants. Some women reported shortened or delayed menstrual cycles, while others experienced heavier or lighter bleeding [Taşkaldıran I et al., 2020]. Phelan N et al., 2021 also reported the changes in women's menstrual cycles, such as increased menstrual bleeding, more painful periods compared to pre-pandemic levels, and missed cycles that had not occurred before the infection. In Muhaidat N et al., 2022, delayed cycles were reported in 19.6% of patients, and shortened cycles in 15.2%. Additionally, 33% of patients experienced heavier bleeding, and 11.4% reported longer menstrual durations [Muharam R et al., 2022]. The occurrence and pattern of menstrual changes observed in our study align with findings reported in recent studies. Various mechanisms may contribute to menstrual changes following COVID-19 infection, with stress being one of the underlying mechanisms [Vigil P et al., 2004]. It has been shown that COVID-19 is a significant source of stress, anxiety, and depression [Czepczor-Bernat K et al., 2021; Khan SM et al., 2022]. Studies have also demonstrated that the changes in female hormone levels are associated with health behaviors, obesity, and stress [Mazza E et al., 2024]. Stress can cause menstrual irregularities by disrupting the hypothalamic-pituitarygonadal (HPG) axis, which may lead to impaired ovulation and hormonal imbalances [Vigil P et al., 2004; Kundakovic M and Rocks D, 2022]. Additionally, prior research has demonstrated that stress can interfere with the luteinizing hormone (LH) surge that typically occurs prior to ovulation, which disrupts the normal ovulatory process and contributes to menstrual irregularities. Disturbances in hormonal regulation may lead to a range of reproductive health issues, further highlighting the impact of stress on the menstrual cycle [Kalantaridou et al, 2022; Kundakovic M and Rocks D,

2022]. Moreover, one potential cause of menstrual irregularities is the direct physiological effect of the virus itself. The coronavirus gains entry into cells by binding to the Angiotensin-converting enzyme 2 (ACE2) receptor, which was initially believed to be present solely in the respiratory system. However, subsequent research has revealed that the virus also affects the ovaries and endometrium. The ACE2 receptors in the ovaries

are essential for the proper maturation of follicles and the process of ovulation, suggesting that viral interference with these receptors could disrupt normal reproductive function and contribute to menstrual disturbances [Stanley KE et al., 2020]. Evidence has demonstrated that cytokines such as interleukin-6, interleukin-8, and tumor necrosis factor-alpha (TNF- α) – key mediators of the inflammatory response in COVID-19 - can induce

TABLE 3. Frequency distribution of self-reported menstrual changes following COVID-19 infection

	,		COVID-19 severity (%) count					- P-		
Variable Cour	Count	ount %	Mild	Severe	Mild and moderate	Moderate and Severe	Moderate	_		
Menstrual bleeding volume after COVID-19 infection										
No Change	197	62.7	(34.5%) 68	(6.1%) 12	(13.2%) 26	(0.5%) 1	(45.7%) 90	0.005		
Increased	36	11.5	(16.7%) 6	(13.9%) 5	(22.2%) 8	(5.6%) 2	(41.7%) 15			
Decreased	36	11.5	(13.9%) 5	(5.6%) 2	(11.1%) 4	(8.3%) 3	(61.1%) 22			
Variable	45	14.3	(22.2%) 10	(2.2%) 1	(22.2%) 10	(6.7%) 3	(46.7%) 21			
Duration of menstruation as	fter CO	VID-1	9 infection							
No Change	224	71.3	(34.4%) 77	(5.8%) 13	(13.8%) 31	(1.3%) 3	(44.6%) 100	0.006		
Increased	21	6.7	(14.3%) 3	(14.3%) 3	(9.5%) 2	(9.5%) 2	(52.4%) 11	-		
Decreased	34	10.8	(8.8%) 3	(8.8%) 3	(14.7%) 5	(5.9%) 2	(61.8%) 21			
Variable	35	11.1	(17.1%) 6	(2.9%) 1	(28.6%) 10	(5.7%) 2	(45.7%) 16	_		
Spotting after COVID-19 inf	fection									
Yes	39	12.4	(5.1%) 2	(10.3%) 4	(23.1%) 9	(2.6%) 1	(59%) 23	0.013		
No	275	87.6	(31.6%) 87	(5.8%) 16	(14.2%) 39	(2.9%) 8	(45.5%) 125	_		
Interval between menstrual cycles after COVID-19 infection										
No Change	210	66.9	(37.1%) 78	(4.3%) 9	(13.3%) 28	(1.9%) 4	(43.3%) 91	0.0001		
Increased	29	9.2	(10.3%) 3	(20.7%) 6	(10.3%) 3	(3.4%) 1	(55.2%) 16	_		
Decreased	22	7.0	(9.1%) 2	(13.6%) 3	(18.2%) 4	0	(59.1%) 13	_		
Variable	53	16.9	(11.3%) 6	(3.8%) 2	(24.5%) 13	(7.5%) 4	(52.8%) 28	_		
Pain during menstruation aft	er COV	ID-19	infection							
No Change	205	65.3	(36.1%) 74	(5.9%) 12	(12.2%) 25	(1.5%) 3	(44.4%) 91	0.001		
Increased	63	20.1	(9.5%) 6	(9.5%) 6	(23.8%) 15	(7.9%) 5	(49.2%) 31			
Decreased	8	2.5	(37.5%) 3	(12.5%) 1	0	0	(50%) 4	_		
Variable	38	12.1	(15.8%) 6	(2.6%) 1	(21.1%) 8	(2.6%) 1	(57.9%) 22			
Premenstrual symptoms after	r COVII	D-19 i	nfection							
No Change	183	58.3	(41%) 75	(6%) 11	(11.5%) 21	(2.2%) 4	(39.3%) 72	0.0001		
Increased	90	28.6	(10%) 9	(5.6%) 5	(16.7%) 15	(4.4%) 4	(63.3%) 57			
Decreased	5	1.6	(20%) 1	(20%) 1	0	0	(60%) 3	_		
Variable	36	11.5	(11.1%) 4	(8.3%) 3	(33.3%) 12	(2.8%) 1	(44.4%) 16			
Timing of menstrual changes	S									
After COVID-19 infection	73	23.2	(19.2%) 14	(6.8%) 5	(15.1%) 11	(1.4%) 1	(57.5%) 42	0.000		
After vaccination	22	7.0	(36.4%) 8	(4.5%) 1	(13.6%) 3	0	(45.5%) 10			
Both	97	30.9	(10.3%) 10	(6.2%) 6	(22.7%) 22	(8.2%) 8	(52.6%) 51			
No changes experienced	122	38.9	(37.1%) 78	(4.3%) 9	(13.3%) 28	(1.9%) 4	(43.3%) 91			
Occurrence of menstrual dist	turbance	s after	r COVID-19 i	nfections						
No disturbances	144	45.8	(45.1%) 65	(6.3%) 9	(10.4%) 15	0	(38.2%) 55	0.000		
after first infection	149	47.5	(16.1%) 24	(6%) 9	(16.8%) 25	(4.7%) 4	(56.4%) 84	_		
after second infection	21	6.7	0	(9.5%) 2	(38.1%) 8	(9.5%) 2	(42.9%) 9			
Notes: * - Chiquare Test										

a procoagulant state. This dysregulations of the coagulation cascade may contribute to alterations in menstrual patterns, including changes in bleeding volume, subsequent to infection [Madaan S et al., 2022]. Moreover, ovarian damage, such as reduced ovarian reserve and reproductive hormonal imbalances, has been observed in women with COVID-19. However, no significant differences in menstrual timing, menstrual bleeding volume, menstrual cycle phases, or history of dysmenorrhea between women with severe and non-severe COVID-19 [Ding T et al., 2021]. A systematic review revealed that alterations in menstrual volume and cycle length have been observed as consequences of COVID-19 infection, with the cycle length changes being the most frequently reported menstrual irregularity. Women primarily reported reduced menstrual volume and longer cycle durations. The results also suggest that the severity of COVID-19 is not associated with changes in the menstrual patterns [Lebar V et al., 2022]. In this study, 92.7% of the participants had received the COVID-19 vaccine. Regarding menstrual changes, 30.9% of participants experienced changes in their menstrual cycle after contracting COVID-19 and receiving the vaccine. Changes in the menstrual cycle following COVID-19 vaccination have been reported to occur at even higher rates in other studies. For example, in the study by Taskaldıran et al., 15% of participants experienced changes in their menstrual patterns after vaccination, with this figure rising to 43.3% after the second dose. Various changes were reported, with the most common being delayed menstruation [Taşkaldıran I et al., 2022]. Menstrual changes following COVID-19 vaccination may also be attributed to immune processes [Muharam R et al., 2022; Mazza E et al., 2024]. One limitation of our study was the lack of investigation into the long-term effects of COV-ID-19 and vaccination on the menstrual cycle, as well as the absence of data on potential confounding factors, such as mood disorders and metabolic conditions.

Conclusion

The results of this study indicate that the severity of COVID-19 infection was associated with significant changes in menstrual characteristics, including bleeding volume, duration of menstruation, and incidence of spotting, interval between cycles, menstrual pain, and premenstrual symptoms. These findings highlight the importance of recognizing the broader social and psychological effects of the pandemic on women's health, emphasizing the need for greater clinical attention and supportive interventions in this area.

ACKNOWLEDGMENTS: The authors would like to thank the Clinical Research Development Unit, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran for their support, cooperation and assistance throughout the period of study.

Funding: The authors report that this work was supported by Shahrekord University of Medical Sciences (Grant No. 6323).

REFERENCES

- Ahmed SF, Quadeer AA, McKay MR.(2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254. doi:10.3390/v12030254.
- 2. Czepczor-Bernat K, Swami V, Modrzejewska A, Modrzejewska J.(2021). COVID-19-Related Stress and Anxiety, Body Mass Index, Eating Disorder Symptomatology, and Body Image in Women from Poland: A Cluster Analysis Approach. Nutrients.13(4).doi:10.3390/nu13041384.
- 3. Ding T, Wang T, Zhang J, Cui P, Chen Z, Zhou S, et al.(2021). Analysis of Ovarian

- Injury Associated With COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Frontiers in medicine.8:635255. doi:10.3389/fmed.2021.635255.
- 4. Gholipour K, Behpaie S, Iezadi S, Ghiasi A, Tabrizi JS. (2023). Costs of inpatient care and out-of-pocket payments for COVID-19 patients: A systematic review. PloS one.18(9):e0283651. doi: 10.1371/journal.pone.0283651.
- 5. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A.(2020). Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus.12(3). doi:10.7759/cureus.7355.

- 6. Kalantaridou SN, Makrigiannakis A, Zoumakis E, Chrousos GP.(2022). Stress and the female reproductive system. Journal of reproductive immunology.. 2004 Jun;62(1-2):61-8. doi: 10.1016/j.jri.2003.09.004.
- 7. Khan SM, Shilen A, Heslin KM, Ishimwe P, Allen AM, Jacobs ET, et al.(2022). SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study. American journal of obstetrics and gynecology.226(2):270-3. doi:10.1016/j.ajog.2021.09.016.
- 8. Kundakovic M, Rocks D.(2022). Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Frontiers in neuroendocrinology. 66:101010. doi:10.1016/j.yfrne.2022.101010.
- 9. Lebar V, Laganà AS, Chiantera V, Kunič T, Lukanović D.(2022). The Effect of COVID-19 on the Menstrual Cycle: A Systematic Review. Journal of clinical medicine.11(13).doi: 10.3390/jcm11133800.
- Madaan S, Talwar D, Jaiswal A, Kumar S, Acharya N, Acharya S, Dewani D. (2022).
 Post-COVID-19 menstrual abnormalities and infertility: Repercussions of the pandemic.
 J Educ Health Promot. 2022 Jun 11;11:170. doi: 10.4103/jehp.jehp_1200_21. PMID: 35847136; PMCID: PMC9277727.
- 11. Mazza E, Troiano E, Ferro Y, Lisso F, Tosi M, Turco E, et al.(2024). Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients.16(11). doi:10.3390/nu16111629.
- 12. Merchant H. (2021). COVID-19 post-vaccine menorrhagia, metrorrhagia or postmenopausal bleeding and potential risk of vaccine-induced thrombocytopenia in women. The BMJ. bmj. n958/rr-2. doi:10.1136/bmj.n958.
- 13. Muharam R, Agiananda F, Budiman YF, Harahap JS, Prabowo KA, Azyati M, et al.(2022). Menstrual cycle changes and mental health states of women hospitalized due to COVID-19. PloS one.17(6):e0270658.doi:10.1371/journal.pone.0270658.
- 14. Muhaidat N., Alshrouf M. A., Alshajrawi R. N., Miqdadi, Z. R., Amro, R., Rabab'ah, A. O., est al., (2022). Cervical Cancer Screening among

- Female Refugees in Jordan: A Cross-Sectional Study. Healthcare, 10(7), 1343. https://doi.org/10.3390/healthcare10071343
- 15. Payne LA, Wise LA, Wesselink AK, Wang S, Missmer SA, Edelman A.(2024). Association between COVID-19 vaccination and menstruation: a state of the science review. BMJ sexual & reproductive health.50(3):212-25. doi:10.1136/bmjsrh-2024-202274.
- Phelan N, Behan LA, Owens L.(2021). The Impact of the COVID-19 Pandemic on Women's Reproductive Health. Frontiers in endocrinology.12:642755. doi:10.3389/ fendo.2021.642755.
- 17. Sharp GC, Fraser A, Sawyer G, Kountourides G, Easey KE, Ford G, et al.(2022). The COVID-19 pandemic and the menstrual cycle: research gaps and opportunities. International journal of epidemiology. 51(3):691-700.doi:10.1093/ije/dyab239.
- 18. Stanley KE, Thomas E, Leaver M, Wells D. (2020). Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues. Fertility and sterility. 114(1):33-43.doi: 10.1016/j. jri.2003.09.004.
- 19. Sualeh M, Uddin MR, Junaid N, Khan M, Pario A, Ain Q.(2022). Impact of COVID-19 Vaccination on Menstrual Cycle: A Cross-Sectional Study from Karachi, Pakistan. Cureus. 14(8):e28630. doi: https://doi.org/10.7759/cureus.28630.
- Taşkaldıran I, Vuraloğlu E, Bozkuş Y, Turhan İyidir Ö, Nar A, Başçıl Tütüncü N.(2022).
 Menstrual Changes after COVID-19 Infection and COVID-19 Vaccination. International journal of clinical practice.2022:3199758.doi: doi:10.1155/2022/3199758.
- 21. Vigil P, Meléndez J, Soto H, Petkovic G, Bernal YA, Molina S.(2004). Chronic Stress and Ovulatory Dysfunction: Implications in Times of COVID-19. Frontiers in global women's health. 2022;3:866104.
- 22. Wang Y, Wang Y, Chen Y, Qin Q. (2020). Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. Journal of medical virology. 92(6):568-76.doi: 10.1002/jmv.25748.

(A)

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 19 (2025). Issue 2

CONTENTS

- **4. MOHAMMAD I., KHAN M.S., ANSARI R., BARI N., MOHAMMAD ANWAR**INTERSECTING PANDEMICS: ANALYZING THE RELATIONSHIP BETWEEN MPOX AND COVID-19
- 18. IBRAHIM F.M., IBRAHIM M.M., JAMALIVAND S.
 MINDFULNESS-BASED COGNITIVE THERAPY ON ANXIETY OF PREGNANT WOMEN DURING THE COVID-19 OUTBREAK IN TEHRAN, IRAN
- 26. LOTFI M., KARDOONI M., PARASTESH S., MIRMOMENI G.
 CLINICAL SPECTRUM AND OUTCOME OF COVID-19—ASSOCIATED RHINO-ORBITAL-CEREBRAL MUCORMYCOSIS: A CROSS-SECTIONAL STUDY
- 33. NIAZYAN L.G.

 ADDRESSING THE DUAL BURDEN OF LONG COVID AND NONCOMMUNICABLE DISEASES IN ARMENIA: A STRATEGIC POLICY APPROACH
- 52. SHAMIM M.

 EMERGENCY GENERAL SURGERY IN COVID-19 PATIENTS: A META-ANALYSIS
- 61. Amra B., Soltaninejad F., Ghaderi F., Masnavi E., Hassanzadeh S. Robillard R., Hassanzadeh S.

THE EFFECT OF COVID–19 OUTBREAK AND VACCINATION ON SLEEP QUALITY, SLEEP CHRONOTYPE (MORNINGNESS–EVENINGNESS), DEPRESSION, ANXIETY AND STRESS; A CROSS-SECTIONAL STUDY AMONG ISFAHANI RESIDENTS

- 71. HOVHANNISYAN S.R., MASHINYAN K.A., SAROYAN M.YU., BADALYAN B.YU., TORGOMYAN A.L. MUSCULOSKELETAL PATHOLOGIES IN PATIENTS WITH COVID-19, ITS INFLUENCE ON OSTEOARTHRITIS: THE ROLE OF VITAMIN D AND HYPOCALCAEMIA.
- 82. Dudchenko L.Sh., Beloglazov V.A., Yatskov I.A., Shadchneva N.A., Solovieva E.A., Popenko Yu.O. REHABILITATION EXPERIENCE IN PATIENTS WITH POST-COVID SYNDROME
- 91. ASGARI M., MOEZZI M., JAFARZADEH L., BANITALEBI S.

 EVALUATION OF MENSTRUAL CYCLE CHANGES AMONG WOMEN IN SHAHREKORD DURING THE COVID-19 PANDEMIC
- 98. ADARSHA G K., MANJUNATHA H. H., RAGHAVENDRA R., SUJITH V. S.

 A STUDY ON H1N1 INFLUENZA IN ADULTS: CLINICAL AND LABORATORY PROFILES,
 AND TREATMENT OUTCOMES AT A TERTIARY CARE HOSPITAL IN SOUTHERN INDIA
- 106. ALSHARDI L., MORSI N., SHARIF L.S.M.

 SLEEP QUALITY AND ITS ASSOCIATION WITH DEPRESSION AMONG PSYCHIATRIC NURSES: A SCOPING REVIEW
- 120. BAGHERI T., MANZOURII L., RAVANKHAH S., VAFAIE F., SAEIDINEJAD Z., MASNAVI E., GEVORGIAN L., CHOPIKYAN A., HASSANZADEH S.

 BRUCELLOSIS CO-INFECTION IN A COVID-19 PATIENTS; A CROSS SECTIONAL DESCRIPTIVE ANALYTICAL STUDY
- 126. MKHITARIAN M., CHOPIKYAN A., HARUTYUNYAN A., MELIK- NUBARYAN D., VARTIKYAN A., TADEVOSYAN A.

VIOLENCE AGAINST HEALTHCARE WORKERS BEFORE AND AFTER COVID-19

132. LOKYAN A.B., AVANESYAN H.M., MURADYAN M.D., HOVHANNISYAN S.V., ZILFYAN A.V., AVAGYAN S.A.
A MULTIDIMENSIONAL STUDY OF THE IMPACT, ACTUAL PERCEPTION, AND
EXPERIENCE OF COVID-19 AMONG ARMENIAN YOUTH AND ADULTS

THE NEW ARMENIAN MEDICAL JOURNAL

Volume19 (2025). Issue 2

The Journal is founded by Yerevan State Medical University after M. Heratsi.

Rector of YSMU

Armen A. Muradyan

Address for correspondence:

Yerevan State Medical University 2 Koryun Street, Yerevan 0025, Republic of Armenia

Phones:

STATE MEDICAL UNIVERSI

YEREVAN

OFFICIAL PUBLICATION OF

(+37410) 582532 YSMU (+37493 588697 Editor-in-Chief

Fax: (+37410) 582532

E-mail:namj.ysmu@gmail.com, ysmiu@mail.ru

URL:http//www.ysmu.am

Our journal is registered in the databases of Scopus, EBSCO and Thomson Reuters (in the registration process)

Scopus

EBSCO

REUTERS

Copy editor: Kristina D Matevosyan

LLC Print in "Monoprint" LLC

Director: Armen Armenaakyan Andraniks St., 96/8 Bulding Yerevan, 0064, Armenia Phone: (+37491) 40 25 86 E-mail: monoprint1@mail.ru

Editor-in-Chief

Arto V. Zilfyan (Yerevan, Armenia)

Deputy Editors

Hovhannes M. **Manvelyan** (Yerevan, Armenia) Hamayak S. **Sisakyan** (Yerevan, Armenia)

Executive Secretary

Stepan A. Avagyan (Yerevan, Armenia)

Editorial Board

Armen A. **Muradyan** (Yerevan, Armenia)

Drastamat N. Khudaverdyan (Yerevan, Armenia)

Levon M. Mkrtchyan (Yerevan, Armenia)

Foregin Members of the Editorial Board

Carsten N. Gutt (Memmingen, Germay)
Muhammad Miftahussurur (Indonesia)
Alexander Woodman (Dharhan, Saudi Arabia)

Coordinating Editor (for this number)

Hesam Adin **Atashi** (Tehran, Iran)

Editorial Advisory Council

Mahdi **Esmaeilzadeh** (Mashhad, Iran)

Ara S. **Babloyan** (Yerevan, Armenia)

Aram Chobanian (Boston, USA)

Luciana **Dini** (Lecce, Italy)

Azat A. Engibaryan (Yerevan, Armenia)

Ruben V. Fanarjyan (Yerevan, Armenia)

Gerasimos Filippatos (Athens, Greece)

Gabriele **Fragasso** (Milan, Italy)

Samvel G. Galstyan (Yerevan, Armenia)

Arthur A. **Grigorian** (Macon, Georgia, USA)

Armen Dz. **Hambardzumyan** (Yerevan, Armenia)

Seyran P. **Kocharyan** (Yerevan, Armenia)

Aleksandr S. Malayan (Yerevan, Armenia)

Mikhail Z. Narimanyan (Yerevan, Armenia)

Yumei Niu (Harbin, China)

Linda F. Noble-Haeusslein (San Francisco, USA)

Arthur K. **Shukuryan** (Yerevan, Armenia)

Suren A. Stepanyan (Yerevan, Armenia)

Gevorg N. **Tamamyan** (Yerevan, Armenia)

Hakob V. **Topchyan** (Yerevan, Armenia)

Alexander **Tsiskaridze** (Tbilisi, Georgia)

Konstantin B. **Yenkoya**n (Yerevan, Armenia)

Peijun Wang (Harbin, Chine)