

THE NEW ARMENIAN MEDICAL JOURNAL

Volume19 (2025), Issue 3 p. 30-36

DOI: https://doi.org/10.56936/18290825-3.19v.2025-30

COMPARING THE ANTI-CANDIDA ALBICANS EFFECT OF ZINGIBER OFFICINALE WITH COMMON ANTIFUNGAL DRUGS

Gavanji S.¹, Bakhtari A.², Baghshahi H.³*, Hamami Chamgordani Z.⁴, Gavanji J.⁵, Sinaei J.⁵, Hassani D.⁶

- ¹ Department of Plant Biotechnology, Medicinal Plants Research Centre, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
- ² Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- ³ Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- ⁴ Department of Adult Health Nursing, Faculty of Nursing and Midwifery, Isfahan University of Medical Sciences, Isfahan, Iran
 - ⁵ Institute of Traditional Medicine and Herbal Plants of Iran, Esfahan, Iran
- ⁶ Department of Food Industry, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Received 23.05.2024; Accepted for printing 15.05.2025

ABSTRACT

Candida albicans (C. albicans) is considered one of the most opportunistic fungal agents and the most common cause of fungal diseases that causes candidiasis in humans and manifests in different clinical forms ranging from simple superficial infection to severe systemic. The study aimed to investigate the inhibitory and lethal effects of Zingiber officinale (Z. officinale) ethanolic extract and common antifungal chemical drugs on C. albicans. Ethanol extract of Z. officinale was prepared at 2 to 20 mg/ml concentrations. Using the microbroth dilution method, the minimum inhibitory concentration and minimum fungicidal concentration of the extract and chemical antifungal drugs were determined. The disk diffusion method and Sabourud Dextrose Agar culture medium were used to evaluate the inhibition zone diameters. The results showed that with the increase in the concentration of the ethanolic extract of Z. officinale, the inhibition rate of C. albicans increased. Ketoconazole had the highest anti-C. albicans effects. The ginger extract at 20 mg/ml concentration had a higher anti-Candida inhibitory activity than nystatin and fluconazole. It was comparable to amphotericin. The current results revealed that the ethanolic extract of Z. officinale had a growth-inhibitory impact on C. albicans and can be used as a safe antifungal therapy.

KEYWORDS: candidiasis, minimum fungicidal concentration, mnimum inhibitory concentration, ginger, ketoconazole.

CITE THIS ARTICLE AS:

Gavanji S., Bakhtari A., Baghshahi H., Hamami Chamgordani Z., Gavanji J., Sinaei J., Hassani D.(2025). Comparing the anti-Candida albicans effect of Zingiber officinale with common antifungal drugs; The New Armenian Medical Journal, vol.19 (3), 30-36; https://doi.org/10.56936/18290825-3.19v.2025-30

Address for Correspondence:

Hojjat Baghshahi

Department of Animal Science, Faculty College of Agriculture and Natural Resources, University of Tehran,

Karaj, Iran

Phone; +989159031196

Email: Baghshahi_h1989@yahoo.com

Introduction

The effects of infectious diseases have had a substantial impact on public health systems around the world [Baker et al., 2022]. In recent years, fungal infections have been linked to significant diseases and death in immunosuppressed or vulnerable populations, causing a broad range of symptoms in different ways, from mild to severe [Gavanji, Larki, 2017; Pagano, Mayor, 2018; Gavanji et al., 2024b]. Candida, a fungus, causes candidiasis, the most severe fungal infection [Bongomin et al., 2017; de Oliveira Santos et al., 2018; Zilfyan A et al., 2020; Zilfyan A et al., 2025]. Candida albicans (C. albicans) can have an impact on the oral cavity, gastrointestinal tract, skin, and reproductive systems [Gavanji et al., 2015; Zilfyan et al., 2021; Nurdiana et al., 2023]. This opportunistic fungus causes two clinical consequences, including temporary and fatal systemic infections [Kumar et al., 2019; Mayor et al., 2005]. The development of new classes of broad-spectrum antifungal drugs with pharmacological properties and powerful therapies has attracted interest because of the threat of drug resistance and the different side effects of synthetic antifungal medicines [Murphy, Bicanic, 2021; Gavanji et al., 2023c]. Traditional medicine has a prominent role in medication development and has been frequently used to treat fungal infections because of its efficiency and fewer side effects [Aschale et al., 2021; Bakhtari, 2022]. Over ancient times, folks have employed plantbased natural chemicals as pharmaceutical drugs [Dzobo, 2022; Gavanji et al., 2024a]. According to the research, traditional medicine served the primary healthcare needs of over 80% of the global population in 2008 [Mbali et al., 2021].

On the other hand, the growing concern of microbial resistance caused researchers to investigate and focus on natural compounds and herbal medicine, which have antimicrobial potential as the future supply of antimicrobial agents. *Zingiber officinale* (*Z. officinale*), also called as ginger, is a member of the *Zingiberaceae* family and is a significant medicinal plant used to treat various diseases [*Ali et al., 2008; Gavanji S.Et al., 2023*]. Many phytochemical compounds found in *Z. officinale*, such as zingiberene, gingerol, paradol, starch, and shogaol, have been demonstrated to have potent antifungal, antibacterial, and antivi-

ral effects. Numerous disorders have historically been treated using the plant, including fever, colic, stomach ulcers, constipation, and lung disorders [Apariman et al., 2006; Chaiyakunapruk et al., 2006; Chen et al., 2007; Fuhrman et al., 2000].

MATERIALS AND METHODS

Extract preparation: The fresh Z. officinale rhizomes were prepared from the market and approved by the Institute of traditional medicine and herbal plants of Iran. In the next step, the rhizomes were washed and dried in the shade at room temperature and oven drying (35-45 °C). Dried rhizomes were thoroughly powdered by an electric blender and passed from mesh (100 sizes). Then, 10 g of ginger powder was dissolved in 100 ml of ethanol in a sterile dark conical flask for 72 h at room temperature (33 \pm 2 °C). The ginger extract was filtered and the liquid part was separated using the Whatman filter paper (Pore size: $2.5 \mu m$). The extract was concentrated using rotary evaporation (45 °C) and stored at 4 °C in darkness for further use [Gavanji et al., 2014, Gavanji S. et al., 2023a].

Antifungal activity assays

Standard strains: The standard strain of *C. albicans* (ATCC10231) was used to evaluate the antimicrobial assay. For this, the lyophilized strains of *C. albicans* were grown on Sabouraud Dextrose Agar (SDA) and incubated for two days at 25 °C.

Determining the inhibitory concentration and fungicide concentration: The minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) of Z. officinale, amphotericin B, Nystatin, ketoconazole, and Fluconazole on C. albicans were evaluated using a microbroth dilution procedure. For this, a diluted extract of Z. officinale in DMSO at concentrations ranging from 0.062 to 20 mg/mL was prepared. The liquid media used was the SDA. Then, 100 mL of each dilution was added to each well of a 96-well microplate, followed by a C. albicans microbial suspension at a concentration of 10⁴–10⁵ CFU/mL. The MIC and MFC of Z. officinale, amphotericin B, nystatin, ketoconazole, and fluconazole were determined after incubation for 24 hours at 35 °C.

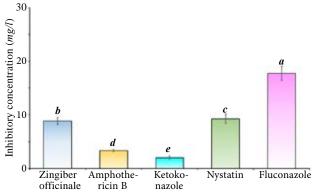
Antifungal activity test: The SDA was used to estimate the antifungal effects of *Z. officinale* on *C. albicans*. In the present study, *C. albicans* was cultivated and incubated on Sabouraud agar me-

dium for 48 h at 37 °C. The selected colonies (two to three colonies) were added to sterile saline and 0.5 McFarland 1 × 10 6 colony forming units CFU mL set for turbidity. The selected suspension was cultivated and developed on SDA or dextrose agar medium at the following step. The Blank disks (6.4 mm) contained an alcoholic extract of Z. officinale at concentrations of 0.062 to 20 mg/ml dissolved in dimethyl sulfoxide (DMSO). Positive control included amphotericin B, Nystatin, ketoconazole, and Fluconazole discs. Dimethyl sulfoxide (DMSO) was considered the negative control. All plates have been incubated at 37 °C for 72 hours. The diameters of the inhibition zones are assessed after 24, 48, and 72 hours.

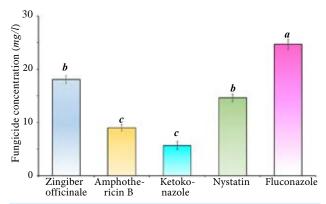
Statistical analysis: Data were analyzed using a one-way ANOVA by GraphPad Prism 6 software (GraphPad Software, La Jolla, CA, USA). Means were compared using Tukey's multiple comparison tests. At p< 0.05, differences were considered significant.

RESULTS

Table 1 displays the effects of various *Z. officinale* extract concentrations on C. albicans at 24, 48, and 72 hours. The results showed that the antifungal activity of this extract is dose-dependent; a higher antifungal effect was observed at higher concentrations.


The findings of the MIC and MFC assays are shown in Figures 1 and 2, respectively. Ketoconazole and amphotericin revealed the lowest MIC (p0.05<). However, there was no significant difference between Z. officinale extract and nystatin. Compared to fluconazole, the ginger extract exhibited a lower MIC (p <0.05). The results showed ketoconazole had the lowest MFC against C. albicans (p <0.05). However, the Z. officinale extract had a better fungicidal effect than fluconazole.

The effect of different treatments on the inhibition zone of C. albicans at various times is shown in Figure 3. Overall, the treatments effects were not affected by the time. Nystatin and fluconazole exhibited the lowest inhibitory zones, whereas ketoconazole had the highest (p <0.05). There was no significant difference between amphotericin and Z. officinale extract in the inhibition zone at various times.


Inhibition zone diameters of Zingiber officinale extract

against C. albicans using disk diffusion			
Concentrations	Taim of treatment (Hours))		
of ZO (mg/disc)	24h	48h	72h
2	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}	0.00 ± 0.00^{a}
4	1.87 ± 1.76^{ab}	2.63 ± 1.10^{b}	2.63±1.10 ^b
6	4.60 ± 2.29^{bc}	5.67±1.53°	6.13±1.70°
8	$6.33\pm2.52^{\circ}$	$7.60 \pm 1.77^{\circ}$	8.23±1.54°
10	10.40 ± 0.92^d	10.83 ± 0.80^{d}	10.87±0.81 ^d
12	$11.97 {\pm} 0.06^{\text{d}}$	$12.60 {\pm} 0.53^{\text{de}}$	$12.73 {\pm} 0.30^{\text{de}}$
14	12.53 ± 0.40^d	13.53±0.46e	13.53±0.46e
16	12.83 ± 0.29^d	13.67±0.21e	14.17 ± 0.29^{ef}
18	13.50±0.50 ^d	14.4±0.36ef	14.50±0.50ef
20	15.87±0.85°	16.43±0.40 ^f	16.50±0.50 ^f

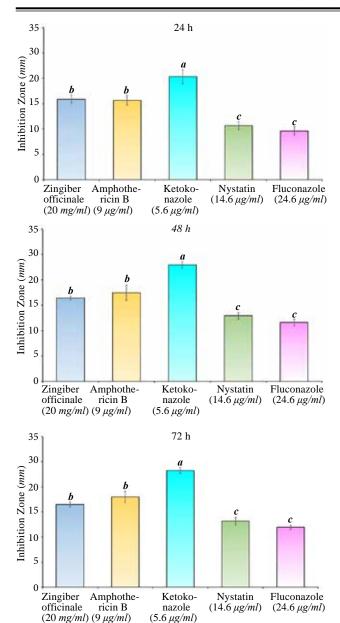

Notes: ZO - Zingiber officinale, ^{a-f} In each column, different letters represent significantly difference at p < 0.05

FIGURE 1. Minimum inhibitory concentration (MIC) of Z. officinale extract (mg/ml) and common chemical antifungal agents (μ g/ml) against C. albicans. ^{a-c} At P < 0.05, different letters represent significant differences.

FIGURE 2. Minimum fungicidal concentration (MFC) of Z. officinale extract (mg/ml) and common chemical antifungal agents (μ g/ml) against C. albicans. ^{a-d} At P < 0.05, different letters represent significant differences.

FIGURE 3. Diameters of zones of inhibition of Z. officinale extracts (mg/ml) and common chemical antifungal agents (μ g/ml) against C. albicans. $^{a-c}$ At P < 0.05, different letters represent significant differences.

DISCUSSION

Because of the increase in drug resistance, researchers have concentrated their attention on finding novel compounds that might prevent the development of microorganisms. According to this study, ethanol extract of *Z. officinale* was more ef-

fective in preventing C. albicans growth than nystatin and fluconazole, although it exhibited similar anti-C. albicans properties to those of amphotericin. In previous research, the antifungal properties of Z. officinale have been shown on some fungi, such as Fusarium oxysporum, Fusarium verticillioides, Fusarium moniliforme, Aspergillus flavus, and Aspergillus fumigatus [Nguefack et al., 2004; Wang and Ng, 2005; Yamamoto-Ribeiro et al., 2013]. Ficker et al. (2003) also evaluated the antifungal properties of 33 plant extracts on 13 known human fungal infections and reported that ginger extracts have inhibitory effects on different fungal species [Ficker et al., 2003; Gavanji et al., 2024a]. In agreement with this present study, Lee et al. (2018) showed that 6-gingerol, one of the most important natural compounds isolated from Z. officinale rhizomes, at a concentration of $10 \mu g/$ ml reduced C. albicans biofilm formation [Lee et al., 2018]. A study on the effects of alcoholic Z. officinale extract on C. albicans isolated from patient mouths revealed that the concentration of the extract, between 50 and 150 mg/ml, inhibits the development of C. albicans, with a minimum inhibitory concentration (MIC) of 25 mg/ml [Khalaf et al., 2020]. In another study, Z. officinale extract was shown to have strong antifungal properties against fluconazole-resistant C. albicans strains isolated from patients with genital candidiasis [Mohammadi and Moatar, 2007]. It has been suggested that the antifungal activity of Z. officinale extracts may be attributed to their natural hydrophobic compounds. These compounds can adhere to the fungi plasma membrane and prevent fungi proliferation by increasing the membrane permeability or preventing the germination of spores and cellular respiration [Kim et al., 2009].

CONCLUSION

The findings of this study suggest that the ethanol extract of *Z. officinale* at 20 mg/ml concentration would be comparable to amphotericin and more potent than nystatin and fluconazole against *C. albicans*.

REFERENCES

- 1. Ali BH, Blunden G, Tanira MO, Nemmar A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food. Chem. Toxicol. 46(2): 409-420. DOI: https://doi.org/10.1016/j.fct.2007.09.085
- 2. Apariman S, Ratchanon S, Wiriyasirivej B. (2006). Effectiveness of ginger for prevention of nausea and vomiting after gynecological laparoscopy. J. Med. Assoc. Thai. 89(12): 2003-2009.
- 3. Aschale Y, Wubetu M, Abebaw A, Yirga T, Minwuyelet A et al. (2021). A systematic review on traditional medicinal plants used for the treatment of viral and fungal infections in Ethiopia. J. Exp. Pharmacol. 13: 807-815. DOI: https://doi.org/10.2147/JEP.S316007
- Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F et al. (2022). Infectious disease in an era of global change. Nat. Rev. Microbiol. 20(4):193-205. DOI: https://doi. org/10.1038/s41579-021-00639-z
- 5. Bakhtari A. (2022). Comparative Effect of Honey Bee Venom and Common Antifungal Agents on Candida albicans. Pharmed: Journal of Pharmaceutical Science and Medical Research.; 5(2): 67-75.
- 6. Bongomin F, Gago S, Oladele RO, Denning DW (2017). Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi. 3(4): 57. DOI: https://doi.org/10.3390/jof3040057
- 7. Chaiyakunapruk N, Kitikannakorn N, Nathisuwan S, Leeprakobboon K, Leelasettagool C. (2006). The efficacy of ginger for the prevention of postoperative nausea and vomiting: a meta-analysis. Am. J. Obstet. Gynecol. 194(1): 95-99. DOI: https://doi.org/10.1016/j. ajog.2005.06.046.
- 8. Chen J-C, Huang L-J, Wu S-L, Kuo S-C, Ho T-Y et al. (2007). Ginger and its bioactive component inhibit enterotoxigenic Escherichia coli heat-labile enterotoxin-induced diarrhea in mice. J. Agric. Food Chem. 55(21): 8390-8397. DOI: https://doi.org/10.1021/jf071460f

- 9. de Oliveira Santos GC, Vasconcelos CC, Lopes AJ, de Sousa Cartágenes MdS, Filho AK et al. (2018). Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front. Microbiol. 9: 1351. DOI: https://doi.org/10.3389/fmicb.2018.01351
- 10. Dzobo K. (2022). The role of natural products as sources of therapeutic agents for innovative drug discovery. Compr. Pharmacol. 408-422.
- 11. Ficker CE, Arnason J, Vindas P, Alvarez L, Akpagana K et al. (2003). Inhibition of human pathogenic fungi by ethnobotanically selected plant extracts. Mycoses. 46(1-2): 29-37. DOI: https://doi.org/10.1046/j.1439-0507.2003.00838.x
- 12. Fuhrman B, Rosenblat M, Hayek T, Coleman R, Aviram M. (2000). Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. J. Nutr. 130(5): 1124-31. DOI: https://doi.org/10.1093/jn/130.5.1124
- 13. Gavanji S, Larki B. (2017). Comparative effect of propolis of honey bee and some herbal extracts on Candida albicans. Chin. J. Integr. Med. 23(3): 201-207. DOI: https://doi.org/10.1007/s11655-015-2074-9
- 14. Gavanji S, Larki B, Bakhtari A. (2014). The effect of extract of Punica granatum var. pleniflora for treatment of minor recurrent aphthous stomatitis. Integr. Med. Res. 3(2): 83-90. DOI: https://doi.org/10.1016/j.imr.2014.03.001
- 15. Gavanji S, Zaker SR, Nejad ZG, Bakhtari A, Bidabadi ES et al. (2015). Comparative efficacy of herbal essences with amphotricin B and ketoconazole on Candida albicans in the in vitro condition. Integr. Med. Res. 4(2): 112-8. DOI: https://doi.org/10.1016/j.imr.2015.01.003
- 16. Gavanji S., Baghshahi H., Bakhtari A., Hamami Chamgordani Z., Badripour N. (2024b). Antiviral activity of Punica granatum species pleniflora, Saveh Black Leather, and Sweet Alak against herpes simplex virus type 1; The New Armenian

- Medical Journal, vol.18(2), p.27-34; DOI: https://doi.org/10.56936/18290825-2.v18.2024-27
- 17. Gavanji S., Baghshahi H., Chamgordani H., Khandan M. (2024a). Hepatotoxicity effects of medicinal plants; The New Armenian Medical Journal, vol.18(1), 65-79; DOI: https://doi.org/10.56936/18290825-18.2024-65
- 18. Gavanji S., Bakhtari A., Baghshahi H., Badripour N., Hamami Chamgordani Z. (2023c). Cytotoxicity Effects Of Ethanolic Extract Of Punica Granatum Var. Pleniflora On Mcf-7 Compared With L929 Cells; The New Armenian Medical Journal, vol.17(3), p 25-30; https://doi.org/10.56936/18290825-2023.17.3-25
- 19. Gavanji S., Bakhtari A., Baghshahi H., Hamami Chamgordani Z. (2023a). Evaluation of the Cytotoxicity effects of ethanolic extract of Ferula assafoetida resin on oral Squamous Cells Carcinoma (KB) compared with L929 cells; The New Armenian Medical Journal. 17(2): 14-20; DOI: https://doi.org/10.56936/18290825-2023.17.2-14
- 20. Gavanji S., Baghshahi H., Hamami Chamgordani Z. (2023b). Cutaneous adverse reactions to herbal medicines. The New Armenian Medical Journal. 17(1): 11-21 DOI: https://doi.org/10.56936/18290825-2023.17.11-21
- Khalaf A, Al-Aedany A, Hussein S. (2020).
 Activity Evaluation of Ginger (Zingiber officinale) Alcoholic Extract against Candida Albicans. AIP. Conf. Proc. 2290: 020018.
- 22. Kim K-J, Sung WS, Suh BK, Moon S-K, Choi J-S et al. (2009). Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 22(2): 235-42. DOI: https://doi.org/10.1007/s10534-008-9159-2
- 23. Kumar K, Askari F, Sahu MS, Kaur R. (2019). Candida glabrata: a lot more than meets the eye. Microorganisms. 7(2): 39. DOI: https://doi.org/10.3390/microorganisms7020039
- 24. Lee J-H, Kim Y-G, Choi P, Ham J, Park JG et al. (2018). Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front. Cell Infect. Microbiol. 8: 299. DOI: https://doi.org/10.3389/fcimb.2018.00299

- 25. Mavor A, Thewes S, Hube B. (2005). Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr. Drug Targets.; 6(8): 863-74. DOI: https://doi.org/10.2174/138945005774912735
- 26. Mbali H, Sithole JJK, Nyondo-Mipando AL. (2021). Prevalence and correlates of herbal medicine use among Anti-Retroviral Therapy (ART) clients at Queen Elizabeth Central Hospital (QECH), Blantyre Malawi: a cross-sectional study. Malawi Med. J. 33(3): 153-158. DOI: https://doi.org/10.4314/mmj.v33i3.2
- 27. Mohammadi R, Moatar F. (2007). Antifungal activity of Zingiber officinale Rosc. essential oil against fluconazole resistant vaginal isolates of Candida albicans. J. Medicinal Plants. 4(24): 22-7.
- 28. Murphy SE, Bicanic T. (2021). Drug resistance and novel therapeutic approaches in invasive candidiasis. Front. Cell Infect. Microbiol. 11, 759408. DOI: https://doi.org/10.3389/fcimb.2021.759408
- 29. Nguefack J, Leth V, Zollo PA, Mathur S. (2004). Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. Int J. Food Microbiol. 94(3): 329-334. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.02.017
- 30. Nurdiana N., Winarsih S., Tri Endharti A., Handayani S. (2023). Holothurin And Caspofungin-Induced Alterations In Ttoll-Like Receptor 4expression In The Vagina Of Rattus Norvegicus Wistar With Candidiasis; The New Armenian Medical Journal, vol.17(3), p 11-19; https://doi.org/10.56936/18290825-2023.17.3-11
- 31. Pagano L, Mayor S. (2018). Invasive fungal infections in high-risk patients: report from TIMM-8 2017. Futur. Sci. OA. 4(6): FSO307. DOI: https://doi.org/10.4155/fsoa-2018-0019
- 32. Wang H, Ng TB. (2005). An antifungal protein from ginger rhizomes. Biochem. Biophys. Res. Commun. 336(1): 100-104. DOI: https://doi.org/10.1016/j.bbrc.2005.08.058
- 33. Yamamoto-Ribeiro MMG, Grespan R, Kohi-

- yama CY, Ferreira FD, Mossini SAG et al. (2013). Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production. Food Chem. 141(3): 3147-3152. DOI: https://doi.org/10.1016/j.food-chem.2013.05.144
- 34. Zilfyan A.V., Avagyan A.S., Muradyan A.A. (2025). The role of resident bacterial-fungal interactions in biofilm formation during wound infections: Does biofilm formation in ecological niches contribute to normal functioning in vertebrate mammals?. The New Armenian Medical Journal, vol.19(1), 50-60; DOI: https://doi.org/10.56936/18290825-1. v19.2025-50
- 35. Zilfyan A.V., Muradyan A.A., Avagyan S.A.(2021). Possible polyamine-dependent mechanisms indicating the systemic characteristics of CoVid-19. New approaches in the correction of symptomat ic therapy of CoVID-19; The New Armenian Medical Journal Vol.15 (2021), No 3, p. 4-15
- 36. Zilfyan A.V., Avagyan S.A., Muradyan A.A, Ghazaryan V.J., Ghazaryan H.V. (2020). Possible role ofaliphatic polyam ines in the inhibition process of daughter viruses replication in COVID-19 infection. Expediency of adding -difluoromethylornithine to the registry of drugs for COVID-19 infection: The New Armenian Medical Journal Vol.14 (2020), No 4, p. 4-15

(A)

THE NEW ARMENIAN MEDICAL JOURNAL

Volume 19 (2025). Issue 3

CONTENTS

- 4. AVAGYAN A.S., MURADYAN A.A., MAKLETSOVA M.G., POLESHCHUK B.B., ZILFYAN A.V.

 THE ROLE OF ALIPHATIC POLYAMINES AND A-SYNUCLEIN IN THE FORMATION OF PERIPHERAL MECHANISMS INVOLVED IN THE PARKINSON'S DISEASE INDUCTION
- 17. Shuliatnikova O.A., Karakulova Y.V., Batog E.I., Rogoznikov G.I.

 STUDY OF THE COMORBID ASSOCIATION OF INFLAMMATORY PERIODONTAL DISEASES AND PATHOLOGY OF THE NERVOUS SYSTEM
- 23. BARI MD.N., ANWAR MD., ANSARI MD.R., OSMAN. E.H.A., ALFAKI, M.A., MOHAMMAD I.

 A COMPLICATED SITUATION OF DIAGNOSIS OF BIOMARKERS IN ALCOHOLIC LIVER
 CIRHOSIS INJURY BY ROUSSEL UCLAF CAUSALITY ASSESSMENT METHOD
- 30. GAVANJI S., BAKHTARI A., BAGHSHAHI H., HAMAMI CHAMGORDANI Z., GAVANJI J., SINAEI J., HASSANI D. COMPARING THE ANTI-CANDIDA ALBICANS EFFECT OF ZINGIBER OFFICINALE WITH COMMON ANTIFUNGAL DRUGS
- 37. Masnavi E., Hasanzadeh S.

 FREQUENCY OF AMINOGLYCOSIDES RESISTANCE GENES (ANT(4')-IA, APH(3')-IIIA,
 AAC-(6')-IE-/APH]2) IN STAPHYLOCOCCUS AUREUS ISOLATED FROM SURGICAL AND
 RESPIRATORY SITE INFECTIONS
- 44. Shahsafi M., Madrnia M., Mohajerani H.R., Akbari M.

 EVALUATION OF THE ANTIBACTERIAL ACTIVITY OF CYNARA SCOLYMUS EXTRACT AND ITS WOUND HEALING POTENCY AGAINST MULTIDRUG-RESISTANT ACINETOBACTER BAUMANNII, In vitro AND In Vivo STUDY
- 57. KANANNEJAD Z., HOSSEINI S.F., KARIMPOUR F., TAYLOR W.R, GEVORGIAN L., GHATEE M. A.
 EXPLORING CLIMATIC AND GEOGRAPHICAL DRIVERS OF HEPATITIS B VIRUS SPREAD
 IN KOHGILUYEH AND BOYER-AHMAD PROVINCE, IRAN
- 67. Sametzadeh M., Roghani M., Askarpour S., Shayestezadeh B., Hanafi M.G.
 NON-ENHANCED CT FINDINGS IN PATIENTS SUSPECTED OF ACUTE APPENDICITIS
 WITH NON-DIAGNOSTIC ULTRASONOGRAPHY
- 75. ZHARFAN A.S., AIRLANGGA P.S., SANTOSO K.H., FITRIATI M.
 PERIOPERATIVE MANAGEMENT OF CESAREAN SECTION IN A PATIENT WITH SEVERE SCOLIOSIS: A CASE REPORT
- 82. Mohammadi Arani F., Shirmohammadi M., Tavakol Z., Karami M., Raeisi Shahraki H., Khaledifar A.

EFFECTIVENESS OF COGNITIVE BEHAVIORAL THERAPY ON SEXUAL SELF-EFFICACY IN REPRODUCTIVE-AGED WOMEN WITH CARDIOVASCULAR DISEASE (A RANDOMIZED CLINICAL TRIAL STUDY)

- 91. MAGHAKYAN S.A., AGHAJANOVA E.M., KHACHATURYAN S.R., HRANTYAN A.M., MELKONYAN N.R., ALEKSANYAN A.Y., BARSEGHYAN E.S., MURADYAN A.A.

 ASSOCIATION OF PRIMARY HYPERPARATHYROIDISM AND PAPILLARY THYROID CARCINOMA IN A PATIENT WITH BROWN TUMOR AND PARKINSONISM: CASE REPORT
- 97. Martirosyan D. A., Muradyan A. A.
 COVID-19 ASSOCIATED INCRUSTING CYSTITIS: A CASE REPORT
- 102. FAGHIHRAD H.R., SHEIKHBAGHERI B., ROKNABADI M., SHAPOURI R. HERBAL OINTMENT BLEND AND ANTIBACTERIAL ACTIVITY
- 108. FANARJYAN R.V., ZAKARYAN A.V., KALASHYAN M.V., ZAKARYAN A.N.
 ACUTE INTRATUMORAL HEMORRHAGE IN A MENINGOTHELIAL MENINGIOMA:
 A CASE REPORT OF EMERGENCY RESECTION
- 112. MKRTCHYAN R.A., GHARDYAN G.K., ABRAHAMYAN L.R., KARALYAN N.YU., ABRAHAMYAN S.H., ABRAHAMYAN R.A.

SIRENOMELIA: A UNIQUE CONGENITAL ANOMALY (CLINICAL CASE)

THE NEW ARMENIAN MEDICAL JOURNAL

Volume19 (2025). Issue 3

The Journal is founded by Yerevan State Medical University after M. Heratsi.

Rector of YSMU

Armen A. Muradyan

Address for correspondence:

Yerevan State Medical University 2 Koryun Street, Yerevan 0025, Republic of Armenia

Phones:

STATE MEDICAL UNIVERSI

OFFICIAL PUBLICATION OF

(+37410) 582532 YSMU (+37493 588697 Editor-in-Chief

Fax: (+37410) 582532

E-mail:namj.ysmu@gmail.com, ysmiu@mail.ru

URL:http//www.ysmu.am

Our journal is registered in the databases of Scopus, EBSCO and Thomson Reuters (in the registration process)

Scorus

EBSCO

REUTERS

Copy editor: Kristina D Matevosyan

LLC Print in "Monoprint" LLC

Director: Armen Armenakyan Andraniks St., 96/8 Bulding Yerevan, 0064, Armenia Phone: (+37491) 40 25 86 E-mail: monoprint1@mail.ru

Editor-in-Chief

Arto V. Zilfyan (Yerevan, Armenia)

Deputy Editors

Hovhannes M. **Manvelyan** (Yerevan, Armenia) Hamayak S. **Sisakyan** (Yerevan, Armenia)

Executive Secretary

Stepan A. Avagyan (Yerevan, Armenia)

Editorial Board

Armen A. **Muradyan** (Yerevan, Armenia)

Drastamat N. Khudaverdyan (Yerevan, Armenia)

Suren A. **Stepanyan** (Yerevan, Armenia)

Foregin Members of the Editorial Board

Carsten N. Gutt (Memmingen, Germay)
Muhammad Miftahussurur (Indonesia)
Alexander Woodman (Dharhan, Saudi Arabia)

Coordinating Editor (for this number)

Hesam Adin **Atashi** (Tehran, Iran)

Editorial Advisory Council

Mahdi Esmaeilzadeh (Mashhad, Iran)

Ara S. Babloyan (Yerevan, Armenia)

Ines Banjari (Osijek, Croatia)

Mariam R Movsisyan (Gymri, Armenia) Azat

A. Engibaryan (Yerevan, Armenia) Ruben V.

Fanariyan (Yerevan, Armenia) Gerasimos

Filippatos (Athens, Greece) Gabriele Fragasso

(Milan, Italy)

Samvel G. Galstyan (Yerevan, Armenia)

Arthur A. Grigorian (Macon, Georgia, USA)

Armen Dz. Hambardzumyan (Yerevan, Armenia)

Seyran P. Kocharyan (Yerevan, Armenia)

Aleksandr S. Malayan (Yerevan, Armenia)

Mikhail Z. **Narimanyan** (Yerevan, Armenia)

Yumei Niu (Harbin, China)

Linda F. **Noble-Haeusslein** (San Francisco, USA)

Arthur K. **Shukuryan** (Yerevan, Armenia)

Levon M. Mkrtchyan (Yerevan, Armenia)

Gevorg N. **Tamamyan** (Yerevan, Armenia)

Hakob V. **Topchyan** (Yerevan, Armenia)

Alexander **Tsiskaridze** (Tbilisi, Georgia)

Konstantin B. **Yenkoya**n (Yerevan, Armenia)

Peijun Wang (Harbin, Chine)