We consider boundary value problem for degenerate first order differential-operator equationLu≡tαu′−Pu=f,u(0)−μu(b) =0,wheret∈(0,b),α≥0,P:H→His linear operator in separable Hilbert spaceH,f∈L2,β((0,b),H),μ∈C. We prove that under some conditions on the operatorPand numberμthe boundary value problem has unique generalized solutionu∈L2,β((0,b),H)when 2α+β<1,β≥0 and for anyf∈L2,β((0,b),H).
No institution available
Mathematics
, 2025, Issue 1, pp. 1–10
ISSN Online: 0000-0000
DOI:
10.xxxx/example-doi