Let the sequence{ak}∞k=1,ak↘0 with{ak}∞k=1/∈l2,and Walsh system{Wk(x)}∞k=0be given.Then for anyε>0 there exists a measurable setE⊂[0,1]with measure|E|>1−εand numbersδk=±1,0 such that foranyp∈[1,2]and each functionf(x)∈Lp(E)there exists a rearrangementk→σ(k)such that the series∞∑k=1δσ(k)aσ(k)Wσ(k)(x)converges tof(x)in thenorm ofLp(E).
No institution available
Mathematics
, 2025, Issue 1, pp. 1–10
ISSN Online: 0000-0000
DOI:
10.xxxx/example-doi