Site logo
Natural Science, Biology, 2024, 14, 67–75
DOI: 10.xxxx/example-doi Special Issue 1(2), 2022 186–1928

ANALOGUES OF NIELSEN’S AND MAGNUS’S THEOREMS FOR FREE BURNSIDE GROUPS OF PERIOD 3

Received N/A; revised N/A; accepted N/A
CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

We prove that the free Burnside groups B(m,3) of period 3 and rank m≥1 have Magnus's property, that is if in B(m,3) the normal closures of r and s coincide, then r is conjugate to s or s−1. We also prove that any automorphism of B(m,3) induced by a Nielsen automorphism of the free group Fm of rank m. We show that the kernel of the natural homomorphism Aut(B(2,3))→GL2(Z3) is the group of inner automorphisms of B(2,3).

Subscribe to TheGufo Newsletter​