Site logo

ANALOGUES OF NIELSEN’S AND MAGNUS’S THEOREMS FOR FREE BURNSIDE GROUPS OF PERIOD 3

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

Abstract

We prove that the free Burnside groups B(m,3) of period 3 and rank m≥1 have Magnus’s property, that is if in B(m,3) the normal closures of r and s coincide, then r is conjugate to s or s−1. We also prove that any automorphism of B(m,3) induced by a Nielsen automorphism of the free group Fm of rank m. We show that the kernel of the natural homomorphism Aut(B(2,3))→GL2(Z3) is the group of inner automorphisms of B(2,3).

Subscribe to TheGufo Newsletter​