Site logo

On the distribution of primitive roots that are ( k , r ) -integers

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

Abstract

Let kk and rr be fixed integers with 1<r<k1<r<k. A positive integer is called rr-free if it is not divisible by the rthrth power of any prime. A positive integer nn is called a (k,r)(k,r)-integer if nn is written in the form akbakb where bb is an rr-free integer. Let pp be an odd prime and let x>1x>1 be a real number.

In this paper an asymptotic formula for the number of (k,r)(k,r)-integers which are primitive roots modulo pp and do not exceed xx is obtained.

Subscribe to TheGufo Newsletter​