Site logo
Natural Science, Biology, 2024, 14, 67–75
DOI: 10.xxxx/example-doi Special Issue 1(2), 2022 186–1928

On the distribution of primitive roots that are ( k , r ) -integers

Received N/A; revised N/A; accepted N/A
CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

Let kk and rr be fixed integers with 1<r<k1<r<k. A positive integer is called rr-free if it is not divisible by the rthrth power of any prime. A positive integer nn is called a (k,r)(k,r)-integer if nn is written in the form akbakb where bb is an rr-free integer. Let pp be an odd prime and let x>1x>1 be a real number.

In this paper an asymptotic formula for the number of (k,r)(k,r)-integers which are primitive roots modulo pp and do not exceed xx is obtained.

Subscribe to TheGufo Newsletter​