Site logo

NON-UNITARIZABLE GROUPS

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

Abstract

A group G is called unitarizable, if every uniformly bounded representation π:G→B(H) of G on a Hilbert space H is unitarizable. N. Monod and N. Ozawa in [6] prove that free Burnside groups B(m,n) are non unitarizable for arbitrary composite odd number n=n1n2 , where n1≥665 . We prove that for the same n the groups B(4,n) have continuum many non-isomorphic factor-groups, each one of which is non-unitarizable and uniformly non-amenable.

Subscribe to TheGufo Newsletter​