Site logo
Natural Science, Biology, 2024, 14, 67–75
DOI: 10.xxxx/example-doi Special Issue 1(2), 2022 186–1928

NON-UNITARIZABLE GROUPS

Received N/A; revised N/A; accepted N/A
CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

A group G is called unitarizable, if every uniformly bounded representation π:G→B(H) of G on a Hilbert space H is unitarizable. N. Monod and N. Ozawa in [6] prove that free Burnside groups B(m,n) are non unitarizable for arbitrary composite odd number n=n1n2 , where n1≥665 . We prove that for the same n the groups B(4,n) have continuum many non-isomorphic factor-groups, each one of which is non-unitarizable and uniformly non-amenable.

Subscribe to TheGufo Newsletter​