Site logo

ON CONVERGENCE OF THE FOURIER DOUBLE SERIES WITH RESPECT TO THE VILENKIN SYSTEMS

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CC BY-NC 4.0 This work is licensed under Creative Commons Attribution–NonCommercial International License (CC BY-NC 4.0).

Abstract

Let {Wk(x)}k=0∞ be either unbounded or bounded Vilenkin system. Then, for each 0<ε<1, there exist a measurable set E⊂[0,1)2 of measure |E|>1−ε, and a subset of natural numbers Γ of density 1 such that for any function f(x,y)∈L1(E) there exists a function g(x,y)∈L1[0,1)2, satisfying the following conditions: g(x,y)=f(x,y) on E ; the nonzero members of the sequence {|ck,s(g)|} are monotonically decreasing in all rays, where ck,s(g)=∫01∫01g(x,y)Wk―(x)Ws―(y)dxdy ; limR∈Γ, R→∞SR((x,y),g)=g(x,y) almost everywhere on [0,1)2, where SR((x,y),g)=∑k2+s2≤R2ck,s(g)Wk(x)Ws(y).

Subscribe to TheGufo Newsletter​